0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (10)
  • R250 - R500 (11)
  • R500+ (1,569)
  • -
Status
Format
Author / Contributor
Publisher

Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Electronic devices & materials > Semi-conductors & super-conductors

Device Applications of Silicon Nanocrystals and Nanostructures (Paperback, Softcover reprint of the original 1st ed. 2009):... Device Applications of Silicon Nanocrystals and Nanostructures (Paperback, Softcover reprint of the original 1st ed. 2009)
Nobuyoshi Koshida
R3,137 Discovery Miles 31 370 Ships in 15 - 20 working days

Recent developments in the technology of silicon nanocrystals and silicon nanostructures, where quantum-size effects are important, are systematically described including examples of device applications. Due to the strong quantum confinement effect, the material properties are freed from the usual indirect- or direct-bandgap regime, and the optical, electrical, thermal, and chemical properties of these nanocrystalline and nanostructured semiconductors are drastically changed from those of bulk silicon. In addition to efficient visible luminescence, various other useful material functions are induced in nanocrystalline silicon and periodic silicon nanostructures. Some novel devices and applications, in fields such as photonics (electroluminescence diode, microcavity, and waveguide), electronics (single-electron device, spin transistor, nonvolatile memory, and ballistic electron emitter), acoustics, and biology, have been developed by the use of these quantum-induced functions in ways different from the conventional scaling principle for ULSI.

Charge Dynamics in 122 Iron-Based Superconductors (Paperback, Softcover reprint of the original 1st ed. 2014): Aliaksei... Charge Dynamics in 122 Iron-Based Superconductors (Paperback, Softcover reprint of the original 1st ed. 2014)
Aliaksei Charnukha
R3,223 Discovery Miles 32 230 Ships in 15 - 20 working days

This thesis combines highly accurate optical spectroscopy data on the recently discovered iron-based high-temperature superconductors with an incisive theoretical analysis. Three outstanding results are reported: (1) The superconductivity-induced modification of the far-infrared conductivity of an iron arsenide with minimal chemical disorder is quantitatively described by means of a strong-coupling theory for spin fluctuation mediated Cooper pairing. The formalism developed in this thesis also describes prior spectroscopic data on more disordered compounds. (2) The same materials exhibit a sharp superconductivity-induced anomaly for photon energies around 2.5 eV, two orders of magnitude larger than the superconducting energy gap. The author provides a qualitative interpretation of this unprecedented observation, which is based on the multiband nature of the superconducting state. (3) The thesis also develops a comprehensive description of a superconducting, yet optically transparent iron chalcogenide compound. The author shows that this highly unusual behavior can be explained as a result of the nanoscopic coexistence of insulating and superconducting phases, and he uses a combination of two complementary experimental methods - scanning near-field optical microscopy and low-energy muon spin rotation - to directly image the phase coexistence and quantitatively determine the phase composition. These data have important implications for the interpretation of data from other experimental probes.

Novel Aspects of Diamond - From Growth to Applications (Paperback, Softcover reprint of the original 1st ed. 2015): Nianjun Yang Novel Aspects of Diamond - From Growth to Applications (Paperback, Softcover reprint of the original 1st ed. 2015)
Nianjun Yang
R5,059 Discovery Miles 50 590 Ships in 15 - 20 working days

This book focuses on new research fields of diamond, from its growth to applications. It covers growth of atomically flat diamond films, properties and applications of diamond nanoparticles, diamond nanoparticles based electrodes and their applications for energy storage and conversion (supercapacitors, CO2 conversion etc.). Diamond for biomimetic interface, all electrochemical devices for in vivo detections and photo-electrochemical degradation of environmental hazards are highlighted.

Frontiers and Challenges in Warm Dense Matter (Paperback, Softcover reprint of the original 1st ed. 2014): Frank Graziani,... Frontiers and Challenges in Warm Dense Matter (Paperback, Softcover reprint of the original 1st ed. 2014)
Frank Graziani, Michael P. Desjarlais, Ronald Redmer, Samuel B. Trickey
R5,166 Discovery Miles 51 660 Ships in 15 - 20 working days

Warm Dense Matter (WDM) occupies a loosely defined region of phase space intermediate between solid, liquid, gas, and plasma, and typically shares characteristics of two or more of these phases. WDM is generally associated with the combination of strongly coupled ions and moderately degenerate electrons, and careful attention to quantum physics and electronic structure is essential. The lack of a small perturbation parameter greatly limits approximate attempts at its accurate description. Since WDM resides at the intersection of solid state and high energy density physics, many high energy density physics (HEDP) experiments pass through this difficult region of phase space. Thus, understanding and modeling WDM is key to the success of experiments on diverse facilities. These include the National Ignition Campaign centered on the National Ignition Facility (NIF), pulsed-power driven experiments on the Z machine, ion-beam-driven WDM experiments on the NDCX-II, and fundamental WDM research at the Linear Coherent Light Source (LCLS). Warm Dense Matter is also ubiquitous in planetary science and astrophysics, particularly with respect to unresolved questions concerning the structure and age of the gas giants, the nature of exosolar planets, and the cosmochronology of white dwarf stars. In this book we explore established and promising approaches to the modeling of WDM, foundational issues concerning the correct theoretical description of WDM, and the challenging practical issues of numerically modeling strongly coupled systems with many degrees of freedom.

Physics of Wurtzite Nitrides and Oxides - Passport to Devices (Paperback, Softcover reprint of the original 1st ed. 2014):... Physics of Wurtzite Nitrides and Oxides - Passport to Devices (Paperback, Softcover reprint of the original 1st ed. 2014)
Bernard Gil
R3,644 Discovery Miles 36 440 Ships in 15 - 20 working days

This book gives a survey of the current state of the art of a special class of nitrides semiconductors, Wurtzite Nitride and Oxide Semiconductors. It includes properties, growth and applications. Research in the area of nitrides semiconductors is still booming although some basic materials sciences issues were solved already about 20 years ago. With the advent of modern technologies and the successful growth of nitride substrates, these materials currently experience a second birth. Advanced new applications like light-emitters, including UV operating LEDs, normally on and normally off high frequency operating transistors are expected. With progress in clean room technology, advanced photonic and quantum optic applications are envisioned in a close future. This area of research is fascinating for researchers and students in materials science, electrical engineering, chemistry, electronics, physics and biophysics. This book aims to be the ad-hoc instrument to this active field of research.

Spectroscopic Analysis of Optoelectronic Semiconductors (Hardcover, 1st ed. 2016): Juan Jimenez, Jens W Tomm Spectroscopic Analysis of Optoelectronic Semiconductors (Hardcover, 1st ed. 2016)
Juan Jimenez, Jens W Tomm
R4,016 Discovery Miles 40 160 Ships in 15 - 20 working days

This book deals with standard spectroscopic techniques which can be used to analyze semiconductor samples or devices, in both, bulk, micrometer and submicrometer scale. The book aims helping experimental physicists and engineers to choose the right analytical spectroscopic technique in order to get specific information about their specific demands. For this purpose, the techniques including technical details such as apparatus and probed sample region are described. More important, also the expected outcome from experiments is provided. This involves also the link to theory, that is not subject of this book, and the link to current experimental results in the literature which are presented in a review-like style. Many special spectroscopic techniques are introduced and their relationship to the standard techniques is revealed. Thus the book works also as a type of guide or reference book for people researching in optical spectroscopy of semiconductors.

The Boundary-Scan Handbook (Paperback, Softcover reprint of the original 4th ed. 2016): Kenneth P. Parker The Boundary-Scan Handbook (Paperback, Softcover reprint of the original 4th ed. 2016)
Kenneth P. Parker
R5,328 Discovery Miles 53 280 Ships in 15 - 20 working days

Aimed at electronics industry professionals, this 4th edition of the Boundary Scan Handbook describes recent changes to the IEEE1149.1 Standard Test Access Port and Boundary-Scan Architecture. This updated edition features new chapters on the possible effects of the changes on the work of the practicing test engineers and the new 1149.8.1 standard. Anyone needing to understand the basics of boundary scan and its practical industrial implementation will need this book. Provides an overview of the recent changes to the 1149.1 standard and the effect of the changes on the work of test engineers; Explains the new IEEE 1149.8.1 subsidiary standard and applications; Describes the latest updates on the supplementary IEEE testing standards. In particular, addresses: IEEE Std 1149.1 Digital Boundary-ScanIEEE Std 1149.4 Analog Boundary-ScanIEEE Std 1149.6 Advanced I/O TestingIEEE Std 1149.8.1 Passive Component TestingIEEE Std 1149.1-2013 The 2013 Revision of 1149.1IEEE Std 1532 In-System ConfigurationIEEE Std 1149.6-2015 The 2015 Revision of 1149.6

Magnetism and Synchrotron Radiation: Towards the Fourth Generation Light Sources - Proceedings of the 6th International School... Magnetism and Synchrotron Radiation: Towards the Fourth Generation Light Sources - Proceedings of the 6th International School "Synchrotron Radiation and Magnetism", Mittelwihr (France), 2012 (Paperback, Softcover reprint of the original 1st ed. 2013)
Eric Beaurepaire, Herve Bulou, Loic Joly, Fabrice Scheurer
R6,581 Discovery Miles 65 810 Ships in 15 - 20 working days

Advances in the synthesis of new materials with often complex, nano-scaled structures require increasingly sophisticated experimental techniques that can probe the electronic states, the atomic magnetic moments and the magnetic microstructures responsible for the properties of these materials. At the same time, progress in synchrotron radiation techniques has ensured that these light sources remain a key tool of investigation, e.g. synchrotron radiation sources of the third generation are able to support magnetic imaging on a sub-micrometer scale. With the Sixth Mittelwihr School on Magnetism and Synchrotron Radiation the tradition of teaching the state-of-the-art on modern research developments continues and is expressed through the present set of extensive lectures provided in this volume. While primarily aimed at postgraduate students and newcomers to the field, this volume will also benefit researchers and lecturers actively working in the field.

Semiconductor Materials for Solar Photovoltaic Cells (Paperback, Softcover reprint of the original 1st ed. 2016): M. Parans... Semiconductor Materials for Solar Photovoltaic Cells (Paperback, Softcover reprint of the original 1st ed. 2016)
M. Parans Paranthaman, Winnie Wong-Ng, Raghu N Bhattacharya
R3,694 Discovery Miles 36 940 Ships in 15 - 20 working days

This book reviews the current status of semiconductor materials for conversion of sunlight to electricity, and highlights advances in both basic science and manufacturing. Photovoltaic (PV) solar electric technology will be a significant contributor to world energy supplies when reliable, efficient PV power products are manufactured in large volumes at low cost. Expert chapters cover the full range of semiconductor materials for solar-to-electricity conversion, from crystalline silicon and amorphous silicon to cadmium telluride, copper indium gallium sulfide selenides, dye sensitized solar cells, organic solar cells, and environmentally friendly copper zinc tin sulfide selenides. The latest methods for synthesis and characterization of solar cell materials are described, together with techniques for measuring solar cell efficiency. Semiconductor Materials for Solar Photovoltaic Cells presents the current state of the art as well as key details about future strategies to increase the efficiency and reduce costs, with particular focus on how to reduce the gap between laboratory scale efficiency and commercial module efficiency. This book will aid materials scientists and engineers in identifying research priorities to fulfill energy needs, and will also enable researchers to understand novel semiconductor materials that are emerging in the solar market. This integrated approach also gives science and engineering students a sense of the excitement and relevance of materials science in the development of novel semiconductor materials. * Provides a comprehensive introduction to solar PV cell materials * Reviews current and future status of solar cells with respect to cost and efficiency * Covers the full range of solar cell materials, from silicon and thin films to dye sensitized and organic solar cells * Offers an in-depth account of the semiconductor material strategies and directions for further research * Features detailed tables on the world leaders in efficiency demonstrations * Edited by scientists with experience in both research and industry

Debye Screening Length - Effects of Nanostructured Materials (Paperback, Softcover reprint of the original 1st ed. 2014):... Debye Screening Length - Effects of Nanostructured Materials (Paperback, Softcover reprint of the original 1st ed. 2014)
Kamakhya Prasad Ghatak, Sitangshu Bhattacharya
R5,537 Discovery Miles 55 370 Ships in 15 - 20 working days

This monograph solely investigates the Debye Screening Length (DSL) in semiconductors and their nano-structures. The materials considered are quantized structures of non-linear optical, III-V, II-VI, Ge, Te, Platinum Antimonide, stressed materials, Bismuth, GaP, Gallium Antimonide, II-V and Bismuth Telluride respectively. The DSL in opto-electronic materials and their quantum confined counterparts is studied in the presence of strong light waves and intense electric fields on the basis of newly formulated electron dispersion laws that control the studies of such quantum effect devices. The suggestions for the experimental determination of 2D and 3D DSL and the importance of measurement of band gap in optoelectronic materials under intense built-in electric field in nano devices and strong external photo excitation (for measuring photon induced physical properties) have also been discussed in this context. The influence of crossed electric and quantizing magnetic fields on the DSL and the DSL in heavily doped semiconductors and their nanostructures has been investigated. This monograph contains 150 open research problems which form the integral part of the text and are useful for both PhD students and researchers in the fields of solid-state sciences, materials science, nano-science and technology and allied fields in addition to the graduate courses in modern semiconductor nanostructures.

Superconductivity in Graphene and Carbon Nanotubes - Proximity effect and nonlocal transport (Paperback, Softcover reprint of... Superconductivity in Graphene and Carbon Nanotubes - Proximity effect and nonlocal transport (Paperback, Softcover reprint of the original 1st ed. 2014)
Pablo Burset Atienza
R3,334 Discovery Miles 33 340 Ships in 15 - 20 working days

The unique electronic band structure of graphene gives rise to remarkable properties when in contact with a superconducting electrode. In this thesis two main aspects of these junctions are analyzed: the induced superconducting proximity effect and the non-local transport properties in multi-terminal devices. For this purpose specific models are developed and studied using Green function techniques, which allow us to take into account the detailed microscopic structure of the graphene-superconductor interface. It is shown that these junctions are characterized by the appearance of bound states at subgap energies which are localized at the interface region. Furthermore it is shown that graphene-supercondutor-graphene junctions can be used to favor the splitting of Cooper pairs for the generation of non-locally entangled electron pairs. Finally, using similar techniques the thesis analyzes the transport properties of carbon nanotube devices coupled with superconducting electrodes and in graphene superlattices.

Functional Nanomaterials and Devices for Electronics, Sensors and Energy Harvesting (Paperback, Softcover reprint of the... Functional Nanomaterials and Devices for Electronics, Sensors and Energy Harvesting (Paperback, Softcover reprint of the original 1st ed. 2014)
Alexei Nazarov, Francis Balestra, Valeriya Kilchytska, Denis Flandre
R4,263 Discovery Miles 42 630 Ships in 15 - 20 working days

This book contains reviews of recent experimental and theoretical results related to nanomaterials. It focuses on novel functional materials and nanostructures in combination with silicon on insulator (SOI) devices, as well as on the physics of new devices and sensors, nanostructured materials and nano scaled device characterization. Special attention is paid to fabrication and properties of modern low-power, high-performance, miniaturized, portable sensors in a wide range of applications such as telecommunications, radiation control, biomedical instrumentation and chemical analysis. In this book, new approaches exploiting nanotechnologies (such as UTBB FD SOI, Fin FETs, nanowires, graphene or carbon nanotubes on dielectric) to pave a way between "More Moore" and "More than Moore" are considered, in order to create different kinds of sensors and devices which will consume less electrical power, be more portable and totally compatible with modern microelectronics products.

Low Threshold Organic Semiconductor Lasers - Hybrid Optoelectronics and Applications as Explosive Sensors (Paperback, Softcover... Low Threshold Organic Semiconductor Lasers - Hybrid Optoelectronics and Applications as Explosive Sensors (Paperback, Softcover reprint of the original 1st ed. 2014)
Yue Wang
R3,334 Discovery Miles 33 340 Ships in 15 - 20 working days

This thesis focuses on two areas - the development of miniature plastic lasers that can be powered by LEDs, and the application of these lasers as highly sensitive sensors for vapours of nitroaromatic explosives (e.g. TNT). Polymer lasers are extremely compact visible lasers; the research described in the thesis is groundbreaking, driving forward the technology and physical understanding to allow these lasers to be routinely pumped by a single high-power LED. A notable advance in the work is the demonstration of nanoimprinted polymer lasers, which exhibit the world's lowest pump threshold densities by two orders of magnitude. The thesis also advances the application of these compact, novel lasers as highly sensitive detectors of explosive vapours, demonstrating that rapid detection can be achieved when microporous polymers are used. This work also demonstrates a prototype CMOS-based microsystem sensor for explosive vapours, exploiting a new detection approach.

Nano-photonics in III-V Semiconductors for Integrated Quantum Optical Circuits (Paperback, Softcover reprint of the original... Nano-photonics in III-V Semiconductors for Integrated Quantum Optical Circuits (Paperback, Softcover reprint of the original 1st ed. 2014)
Nicholas Andrew Wasley
R2,833 Discovery Miles 28 330 Ships in 15 - 20 working days

This thesis breaks new ground in the physics of photonic circuits for quantum optical applications. The photonic circuits are based either on ridge waveguides or photonic crystals, with embedded quantum dots providing the single qubit, quantum optical emitters. The highlight of the thesis is the first demonstration of a spin-photon interface using an all-waveguide geometry, a vital component of a quantum optical circuit, based on deterministic single photon emission from a single quantum dot. The work makes a further important contribution to the field by demonstrating the effects and limitations that inevitable disorder places on photon propagation in photonic crystal waveguides, a further key component of quantum optical circuits. Overall the thesis offers a number of highly novel contributions to the field; those on chip circuits may prove to be the only means of scaling up the highly promising quantum-dot-based quantum information technology.

Optical Properties of Bismuth-Based Topological Insulators (Paperback, Softcover reprint of the original 1st ed. 2014): Paola... Optical Properties of Bismuth-Based Topological Insulators (Paperback, Softcover reprint of the original 1st ed. 2014)
Paola Di Pietro
R3,186 Discovery Miles 31 860 Ships in 15 - 20 working days

Topological Insulators (TIs) are insulators in the bulk, but have exotic metallic states at their surfaces. The topology, associated with the electronic wavefunctions of these systems, changes when passing from the bulk to the surface. This work studies, by means of infrared spectroscopy, the low energy optical conductivity of Bismuth based TIs in order to identify the extrinsic charge contribution of the bulk and to separate it from the intrinsic contribution of the surface state carriers. The extensive results presented in this thesis definitely shows the 2D character of the carriers in Bismuth-based topological insulators. The experimental apparatus and the FTIR technique, the theory of optical properties and Surface Plasmon Polaritons, as well as sample preparation of both crystals and thin films, and the analysis procedures are thoroughly described.

Physics of Graphene (Paperback, Softcover reprint of the original 1st ed. 2014): Hideo Aoki, Mildred S. Dresselhaus Physics of Graphene (Paperback, Softcover reprint of the original 1st ed. 2014)
Hideo Aoki, Mildred S. Dresselhaus
R5,364 Discovery Miles 53 640 Ships in 15 - 20 working days

This book provides a state of the art report of the knowledge accumulated in graphene research. The fascination with graphene has been growing very rapidly in recent years and the physics of graphene is now becoming one of the most interesting as well as the most fast-moving topics in condensed-matter physics. The Nobel prize in physics awarded in 2010 has given a tremendous impetus to this topic. The horizon of the physics of graphene is ever becoming wider, where physical concepts go hand in hand with advances in experimental techniques. Thus this book is expanding the interests to not only transport but optical and other properties for systems that include multilayer as well as monolayer graphene systems. The book comprises experimental and theoretical knowledge. The book is also accessible to graduate students.

Organic Solar Cells - Theory, Experiment, and Device Simulation (Paperback, Softcover reprint of the original 1st ed. 2014):... Organic Solar Cells - Theory, Experiment, and Device Simulation (Paperback, Softcover reprint of the original 1st ed. 2014)
Wolfgang Tress
R5,736 Discovery Miles 57 360 Ships in 15 - 20 working days

This book covers in a textbook-like fashion the basics or organic solar cells, addressing the limits of photovoltaic energy conversion and giving a well-illustrated introduction to molecular electronics with focus on the working principle and characterization of organic solar cells. Further chapters based on the author's dissertation focus on the electrical processes in organic solar cells by presenting a detailed drift-diffusion approach to describe exciton separation and charge-carrier transport and extraction. The results, although elaborated on small-molecule solar cells and with focus on the zinc phthalocyanine: C60 material system, are of general nature. They propose and demonstrate experimental approaches for getting a deeper understanding of the dominating processes in amorphous thin-film based solar cells in general. The main focus is on the interpretation of the current-voltage characteristics (J-V curve). This very standard measurement technique for a solar cell reflects the electrical processes in the device. Comparing experimental to simulation data, the author discusses the reasons for S-Shaped J-V curves, the role of charge carrier mobilities and energy barriers at interfaces, the dominating recombination mechanisms, the charge carrier generation profile, and other efficiency-limiting processes in organic solar cells. The book concludes with an illustrative guideline on how to identify reasons for changes in the J-V curve. This book is a suitable introduction for students in engineering, physics, material science, and chemistry starting in the field of organic or hybrid thin-film photovoltaics. It is just as valuable for professionals and experimentalists who analyze solar cell devices.

Subsecond Annealing of Advanced Materials - Annealing by Lasers, Flash Lamps and Swift Heavy Ions (Paperback, Softcover reprint... Subsecond Annealing of Advanced Materials - Annealing by Lasers, Flash Lamps and Swift Heavy Ions (Paperback, Softcover reprint of the original 1st ed. 2014)
Wolfgang Skorupa, Heidemarie Schmidt
R2,492 Discovery Miles 24 920 Ships in 15 - 20 working days

The thermal processing of materials ranges from few fem to seconds by Swift Heavy Ion Implantation to about one second using advanced Rapid Thermal Annealing. This book offers after an historical excursus selected contributions on fundamental and applied aspects of thermal processing of classical elemental semiconductors and other advanced materials including nanostructures with novel optoelectronic, magnetic, and superconducting properties. Special emphasis is given on the diffusion and segregation of impurity atoms during thermal treatment. A broad range of examples describes the solid phase and/or liquid phase processing of elemental and compound semiconductors, dielectric composites and organic materials.

Dispersion Relations in Heavily-Doped Nanostructures (Paperback, Softcover reprint of the original 1st ed. 2016): Kamakhya... Dispersion Relations in Heavily-Doped Nanostructures (Paperback, Softcover reprint of the original 1st ed. 2016)
Kamakhya Prasad Ghatak
R2,955 Discovery Miles 29 550 Ships in 15 - 20 working days

This book presents the dispersion relation in heavily doped nano-structures. The materials considered are III-V, II-VI, IV-VI, GaP, Ge, Platinum Antimonide, stressed, GaSb, Te, II-V, HgTe/CdTe superlattices and Bismuth Telluride semiconductors. The dispersion relation is discussed under magnetic quantization and on the basis of carrier energy spectra. The influences of magnetic field, magneto inversion, and magneto nipi structures on nano-structures is analyzed. The band structure of optoelectronic materials changes with photo-excitation in a fundamental way according to newly formulated electron dispersion laws. They control the quantum effect in optoelectronic devices in the presence of light. The measurement of band gaps in optoelectronic materials in the presence of external photo-excitation is displayed. The influences of magnetic quantization, crossed electric and quantizing fields, intense electric fields on the on the dispersion relation in heavily doped semiconductors and super-lattices are also discussed. This book contains 200 open research problems which form the integral part of the text and are useful for graduate students and researchers. The book is written for post graduate students, researchers and engineers.

Advanced Semiconducting Materials and Devices (Paperback, Softcover reprint of the original 1st ed. 2016): K. M. Gupta, Nishu... Advanced Semiconducting Materials and Devices (Paperback, Softcover reprint of the original 1st ed. 2016)
K. M. Gupta, Nishu Gupta
R4,685 Discovery Miles 46 850 Ships in 15 - 20 working days

This book presents the latest developments in semiconducting materials and devices, providing up-to-date information on the science, processes, and applications in the field. A wide range of topics are covered, including optoelectronic devices, metal-semiconductor junctions, heterojunctions, MISFETs, LEDs, semiconductor lasers, photodiodes, switching diodes, tunnel diodes, Gunn diodes, solar cells, varactor diodes, IMPATT diodes, and advanced semiconductors. Detailed attention is paid to advanced and futuristic materials. In addition, clear explanations are provided of, for example, electron theories, high-field effects, the Hall effect, transit-time effects, drift and diffusion, breakdown mechanisms, equilibrium and transient conditions, switching, and biasing. The book is designed to meet the needs of undergraduate engineering students and will also be very useful for postgraduate students; it will assist in preparation for examinations at colleges and universities and for other examinations in engineering. Practice questions are therefore presented in both essay and multiple choice format, and many solved examples and unsolved problems are included.

Lattices of Dielectric Resonators (Paperback, Softcover reprint of the original 1st ed. 2016): Alexander Trubin Lattices of Dielectric Resonators (Paperback, Softcover reprint of the original 1st ed. 2016)
Alexander Trubin
R3,334 Discovery Miles 33 340 Ships in 15 - 20 working days

This book provides the analytical theory of complex systems composed of a large number of high-Q dielectric resonators. Spherical and cylindrical dielectric resonators with inferior and also whispering gallery oscillations allocated in various lattices are considered. A new approach to S-matrix parameter calculations based on perturbation theory of Maxwell equations, developed for a number of high-Q dielectric bodies, is introduced. All physical relationships are obtained in analytical form and are suitable for further computations. Essential attention is given to a new unified formalism of the description of scattering processes. The general scattering task for coupled eigen oscillations of the whole system of dielectric resonators is described. The equations for the expansion coefficients are explained in an applicable way. The temporal Green functions for the dielectric resonator are presented. The scattering process of short pulses in dielectric filter structures, dielectric antennas and lattices of dielectric resonators is discussed.

Towards a Spin-Ensemble Quantum Memory for Superconducting Qubits - Design and Implementation of the Write, Read and Reset... Towards a Spin-Ensemble Quantum Memory for Superconducting Qubits - Design and Implementation of the Write, Read and Reset Steps (Paperback, Softcover reprint of the original 1st ed. 2016)
Cecile Grezes
R2,846 Discovery Miles 28 460 Ships in 15 - 20 working days

This work describes theoretical and experimental advances towards the realization of a hybrid quantum processor in which the collective degrees of freedom of an ensemble of spins in a crystal are used as a multi-qubit register for superconducting qubits. A memory protocol made of write, read and reset operations is first presented, followed by the demonstration of building blocks of its implementation with NV center spins in diamond. Qubit states are written by resonant absorption of a microwave photon in the spin ensemble and read out of the memory on-demand by applying Hahn echo refocusing techniques to the spins. The reset step is implemented in between two successive write-read sequences using optical repumping of the spins.

Energy-Efficient VCSELs for Optical Interconnects (Paperback, Softcover reprint of the original 1st ed. 2016): Philip Moser Energy-Efficient VCSELs for Optical Interconnects (Paperback, Softcover reprint of the original 1st ed. 2016)
Philip Moser
R2,833 Discovery Miles 28 330 Ships in 15 - 20 working days

This dissertation provides the first systematic analysis of the dynamic energy efficiency of vertical-cavity surface-emitting lasers (VCSELs) for optical interconnects, a key technology to address the pressing ecological and economic issues of the exponentially growing energy consumption in data centers. Energy-efficient data communication is one of the most important fields in "Green Photonics" enabling higher bit rates at significantly reduced energy consumption per bit. In this thesis the static and dynamic properties of GaAs-based oxide-confined VCSELs emitting at 850 nm and 980 nm are analyzed and general rules for achieving energy-efficient data transmission using VCSELs at any wavelength are derived. These rules are verified in data transmission experiments leading to record energy-efficient data transmission across a wide range of multimode optical fiber distances and at high temperatures up to 85 DegreesC. Important trade-offs between energy efficiency, temperature stability, modulation bandwidth, low current-density operation and other VCSEL properties are revealed and discussed.

III-Nitride Ultraviolet Emitters - Technology and Applications (Paperback, Softcover reprint of the original 1st ed. 2016):... III-Nitride Ultraviolet Emitters - Technology and Applications (Paperback, Softcover reprint of the original 1st ed. 2016)
Michael Kneissl, Jens Rass
R4,701 Discovery Miles 47 010 Ships in 15 - 20 working days

This book provides a comprehensive overview of the state-of-the-art in group III-nitride based ultraviolet LED and laser technologies, covering different substrate approaches, a review of optical, electronic and structural properties of InAlGaN materials as well as various optoelectronic components. In addition, the book gives an overview of a number of key application areas for UV emitters and detectors, including water purification, phototherapy, sensing, and UV curing. The book is written for researchers and graduate level students in the area of semiconductor materials, optoelectronics and devices as well as developers and engineers in the various application fields of UV emitters and detectors.

Complex Plasmas - Scientific Challenges and Technological Opportunities (Paperback, Softcover reprint of the original 1st ed.... Complex Plasmas - Scientific Challenges and Technological Opportunities (Paperback, Softcover reprint of the original 1st ed. 2014)
Michael Bonitz, Jose Lopez, Kurt Becker, Hauke Thomsen
R4,350 Discovery Miles 43 500 Ships in 15 - 20 working days

This book provides the reader with an introduction to the physics of complex plasmas, a discussion of the specific scientific and technical challenges they present and an overview of their potential technological applications. Complex plasmas differ from conventional high-temperature plasmas in several ways: they may contain additional species, including nano meter- to micrometer-sized particles, negative ions, molecules and radicals and they may exhibit strong correlations or quantum effects. This book introduces the classical and quantum mechanical approaches used to describe and simulate complex plasmas. It also covers some key experimental techniques used in the analysis of these plasmas, including calorimetric probe methods, IR absorption techniques and X-ray absorption spectroscopy. The final part of the book reviews the emerging applications of microcavity and microchannel plasmas, the synthesis and assembly of nanomaterials through plasma electrochemistry, the large-scale generation of ozone using microplasmas and novel applications of atmospheric-pressure non-thermal plasmas in dentistry. Going beyond the scope of traditional plasma texts, the presentation is very well suited for senior undergraduate, graduate students and postdoctoral researchers specializing in plasma physics.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Multinary Alloys Based on III-V…
Vasyl Tomashyk Paperback R1,450 Discovery Miles 14 500
Nanolithography - The Art of Fabricating…
Martin Feldman Hardcover R5,484 Discovery Miles 54 840
High-k Materials in Multi-Gate FET…
Shubham Tayal, Parveen Singla, … Hardcover R4,136 Discovery Miles 41 360
Compound Semiconductors 1996…
M.S. Shur Hardcover R5,435 R4,404 Discovery Miles 44 040
Physics and Applications of CVD Diamond
S Koizumi Hardcover R4,650 R3,699 Discovery Miles 36 990
Modern Physics for Semiconductor Science
Charles C Coleman Paperback R2,516 R2,032 Discovery Miles 20 320
Ultrafast Lasers Based on Quantum Dot…
EU Rafailov Hardcover R3,459 R2,767 Discovery Miles 27 670
Applied Superconductivity - Handbook on…
P. Seidel Hardcover R15,582 Discovery Miles 155 820
Organic Nanostructured Thin Film Devices…
Sam Zhang Hardcover R4,889 R1,815 Discovery Miles 18 150
Wide Bandgap Light Emitting Materials…
Gertrude F. Neumark, Igor L. Kuskovsky, … Hardcover R5,577 R4,418 Discovery Miles 44 180

 

Partners