![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Electronic devices & materials > Semi-conductors & super-conductors
On the current status of research activity, providing new information on the applications of SQUIDs, including magnetocardiography, immunoassays, and laser-SQUID microscopes, all of which are close to being commercially available.
Silicon photonics is currently a very active and progressive area of research, as silicon optical circuits have emerged as the replacement technology for copper-based circuits in communication and broadband networks. The demand for ever improving communications and computing performance continues, and this in turn means that photonic circuits are finding ever increasing application areas. This text provides an important and timely overview of the 'hot topics' in the field, covering the various aspects of the technology that form the research area of silicon photonics. With contributions from some of the world's leading researchers in silicon photonics, this book collates the latest advances in the technology. "Silicon Photonics: the State of the Art" opens with a highly informative foreword, and continues to feature: the integrated photonic circuit;silicon photonic waveguides; photonic bandgap waveguides;mechanisms for optical modulation in silicon;silicon based light sources;optical detection technologies for silicon photonics;passive silicon photonic devices;photonic and electronic integration approaches;applications in communications and sensors. "Silicon Photonics: the State of the Art" covers the essential elements of the entire field that is silicon photonics and is therefore an invaluable text for photonics engineers and professionals working in the fields of optical networks, optical communications, and semiconductor electronics. It is also an informative reference for graduate students studying for PhD in fibre optics, integrated optics, optical networking, microelectronics, or telecommunications.
This Volume 44 of Advances in Solid State Physics contains the written versions of most of the invited lectures of the Spring Meeting of the Condensed Matter Physics section of the Deutsche Physikalische Gesellschaft held from March 8 to 12, 2004 in Regensburg, Germany. Many of the topical talks given at the numerous and very lively symposia are also included. They have covered extremely interesting and timely subjects. Thus the book truly reflects the status of the field of solid state physics in 2004, and indicates its importance, not only in Germany but also internationally.
In the past decade, there has been a burst of new and fascinating physics associated to the unique properties of two-dimensional exciton polaritons, their recent demonstration of condensation under non-equilibrium conditions and all the related quantum phenomena, which have stimulated extensive research work. This monograph summarizes the current state of the art of research on exciton polaritons in microcavities: their interactions, fast dynamics, spin-dependent phenomena, temporal and spatial coherence, condensation under non-equilibrium conditions, related collective quantum phenomena and most advanced applications. The monograph is written by the most active authors who have strongly contributed to the advances in this area. It is of great interests to both physicists approaching this subject for the first time, as well as a wide audience of experts in other disciplines who want to be updated on this fast moving field.
C axis Current I ~ . The (11 0) thick homoepitaxial film of 320 nm -------~ ~-=-=--==---==--==--==--- shows a very good surface flatness, which --------** sJ;1 0] suggests the unique (110) atomic plane helps 2- A [1 1 OJ dimensional epitaxial growth of YBCO films, and shows excellent high Tc. The resultant 1. 0 surface morphology of YBCO is quite different Q ,. -- R(270)=1. 60 m 0 from the (110) heteroepitaxial films of similar 0 0. 0 " thickness [11). In the case of heteroepitaxy ~ . ,,_. 1. 0 irrespective of c-axis [ 12] or a-axis oriented ~ ~. . ,. R(270)=3. 71 m 0 films [5), only thin films show flat surfaces, g 0. 0 . . Tc=92. 3K "' which, however, give usually a degraded Tc due -~ 1. 0 v v I - to lattice mismatching. In conclusion, we have ::1. ,. . . . . R(270)=31. 9 mO succeeded to grow high-quality (11 0) YBCO ~ YBCO film . . Tc=90. 7 K 0. 0 *;:: YBCO(IIO) 1 0 *d*--~ YBCO thinfilms on (11 0) YBCO single crystal substrate ~Xtt=u 1. 0 substra substrates with very flat surfaces and high Tc's. :GBP R(270)=40. 1 m 0 0. 0 LLLLL. J. . . . LL~. t-J' L-Tc=9LWO. L-! L-K LLLLL. . . . L. . I. . . . l. . . . L. L. L. J. . . . . L. L. l. . . J 50 100 150 200 250 300 0 ACKNOWLEDGMENTS Temperature (K) One of the authors (T. U. ) would like to thank Fig.
In the past two years conferences on superconductivity have been characterized by the attendance of hundreds of scientists. Consequently, the organizers were forced to schedule numerous parallel sessions and poster presentations with an almost unsurveyable amount of information. It was, therefore, felt that a more informal get-together, providing ample time for a thourough discussion of some topics of current interest in high-temperature superconductivity, was timely and benefitial for leading scientists as well as for newcomers in the field. The present volume contains the majority of papers presented at the International Discussion Meeting on High-Tc Superconductors held at the Mauterndorf Castle in the Austrian Alps from February 7 to 11, 1988. Each subject was introduced in review form by a few invited speakers and then discussed together with the contributed poster presentations. These discussion sessions chaired by selected scientists turned out to be the highlights of the meeting, not only because all the participants truly appreciated the possibility of an information exchange, but mainly because of the magnificent job done by the discussion chairmen, John A. Mydosh (Leiden), Martin Peter (Geneva) and Ken E. Gray (Argonne). First results on the just discovered Bi-superconductors and the clarification of electron resonance experiments on (123)-compounds should be mentioned in particular. The relaxed atomosphere favoring free discussions was certainly promoted by the surroundings offered in the Mauterndorf Castle, which dates back to 1253. Poster presentations and a conference banquet in historic knight's halls are certainly not found everyday in conference routines.
Femtosecond laser micromachining of transparent material is a powerful and versatile technology. In fact, it can be applied to several materials. It is a maskless technology that allows rapid device prototyping, has intrinsic three-dimensional capabilities and can produce both photonic and microfluidic devices. For these reasons it is ideally suited for the fabrication of complex microsystems with unprecedented functionalities. The book is mainly focused on micromachining of transparent materials which, due to the nonlinear absorption mechanism of ultrashort pulses, allows unique three-dimensional capabilities and can be exploited for the fabrication of complex microsystems with unprecedented functionalities.This book presents an overview of the state of the art of this rapidly emerging topic with contributions from leading experts in the field, ranging from principles of nonlinear material modification to fabrication techniques and applications to photonics and optofluidics.
"Amorphous Chalcogenide Semiconductors and Glasses" describes developments in the science and technology of this class of materials. This book offers an up-to-date treatment of chalcogenide glasses and amorphous semiconductors from basic principles to applications while providing the reader with the necessary theoretical background to understanding the material properties technology of this class of materials. This book offers an up-to-date treatment of chalcogenide glasses and amorphous semiconductors from basic principles to applications while providing the reader with the necessary theoretical background to understanding the material properties. Chalcogenides form a special class of materials, which have one or more of the elements from the chalcogen group, Group VI in the Periodic Table (S, Se. or Te) as a constituent; the chalcogen is mixed with other elements to form various "new" compounds and alloys. Chalcogenides are noncrystalline solids because their structure is "amorphous" or "glassy". Such structures have totally different properties than crystalline solids. Chalcogenide glasses have a number of very interesting and useful properties, which have been already exploited in the commercialization of new devices.
What are the relations between the shape of a system of cities and that of fish school? Which events should happen in a cell in order that it participates to one of the finger of our hands? How to interpret the shape of a sand dune? This collective book written for the non-specialist addresses these questions and more generally, the fundamental issue of the emergence of forms and patterns in physical and living systems. It is a single book gathering the different aspects of morphogenesis and approaches developed in different disciplines on shape and pattern formation. Relying on the seminal works of D'Arcy Thompson, Alan Turing and Rene Thom, it confronts major examples like plant growth and shape, intra-cellular organization, evolution of living forms or motifs generated by crystals. A book essential to understand universal principles at work in the shapes and patterns surrounding us but also to avoid spurious analogies.
Focusing on the purely theoretical aspects of strongly correlated electrons, this volume brings together a variety of approaches to models of the Hubbard type - i.e., problems where both localized and delocalized elements are present in low dimensions. The chapters are arranged in three parts. The first part deals with two of the most widely used numerical methods in strongly correlated electrons, the density matrix renormalization group and the quantum Monte Carlo method. The second part covers Lagrangian, Functional Integral, Renormalization Group, Conformal, and Bosonization methods that can be applied to one-dimensional or weakly coupled chains. The third part considers functional derivatives, mean-field, self-consistent methods, slave-bosons, and extensions.
Regular Nanofabrics in Emerging Technologies gives a deep insight into both fabrication and design aspects of emerging semiconductor technologies, that represent potential candidates for the post-CMOS era. Its approach is unique, across different fields, and it offers a synergetic view for a public of different communities ranging from technologists, to circuit designers, and computer scientists. The book presents two technologies as potential candidates for future semiconductor devices and systems and it shows how fabrication issues can be addressed at the design level and vice versa. The reader either for academic or research purposes will find novel material that is explained carefully for both experts and non-initiated readers. Regular Nanofabrics in Emerging Technologies is a survey of post-CMOS technologies. It explains processing, circuit and system level design for people with various backgrounds.
Terahertz science and technology is attracting great interest due to its application in a wide array of fields made possible by the development of new and improved terahertz radiation sources and detectors. This book focuses on the development and characterization of one such source - namely the semi-large aperture photoconducting (PC) antenna fabricated on Fe-doped bulk Ga0.69In0.31As substrate. The high ultrafast carrier mobility, high resistivity, and subpicosecond carrier lifetime along with low bandgap make Ga0.69In0.31As an excellent candidate for PC antenna based THz emitter that can be photoexcited by compact Yb-based multiwatt laser systems for high power THz emission. The research is aimed at evaluating the impact of physical properties of a semi-large aperture Ga0.69In0.31As PC antenna upon its THz generation efficiency, and is motivated by the ultimate goal of developing a high-power terahertz radiation source for time-domain terahertz spectroscopy and imaging systems.
The field of high-temperature superconductivity has encouraged an inter disciplinary approach to research. It has required significant cooperation and collaboration among researchers, each of whom has brought to it a rich variety of experience from many other fields. Recently, great improvements have been made in the quality of research. The subject has matured and been launched into the next stage through the resonance between science and technology. The current progress of materials processing and engineering in this field is analogous to that previously seen in the development of semiconductors. These include the appearance of materials taking the place of YBa2Cu307 owing to their improved properties (higher critical temperatures and stronger flux pin ning) in which rare earth ions with large radii (La, Nd, Sm) substitute for Y; the development of technology enabling growth control on the nanometer scale; and precise and reproducible measurements that can be used as rigorous tests of theoretical models, which in turn are expected to lead to the develop ment of new devices. For further progress in high-T research, academics and c technologists must pool their knowledge and experience. I hope that this volume will promote that goal by providing the reader with the latest results of high-temperature superconductor research and will stimulate further discussion and collaboration.
This book is addressed to all scientists interested in the use of high magnetic ?elds and in the use of high-?eld facilities around the world. In particular it will help young scientists and newcomers to the topic to gain a better understanding in areas such as condensed matter physics, in which the magnetic ?eld plays a key role either as a parameter controlling the Hamiltonian, or as an experimental tool to probe the underlying mechanism. This concerns mostly strongly correlated and (or) low dimensional systems. Rather than covering all these subjects in detail, the philosophy here is to give essential physical concepts in some of the most active ?elds, which have been quickly growing in the last ten to twenty years. Besides its role as a physical parameter in condensed matter physics, a large magnetic ?eld is essential to Electron Paramagentic Resonance (EPR) and Nuclear Magnetic Resonance (NMR) spectroscopies. The state of art of high resolution NMRin liquids and solids and high frequency EPRapplied to ?elds like chemistry and biology are also reviewed in this volume. The ?rst series of chapters is devoted to the integer and the Fractional Qu- tum Hall E?ects (FQHE) in two-dimensional electron systems. C. Glattli brushes an historical background and a comprehensive review of transport phenomena in these systems, including recent developments on the mesoscopic electronic transport at the edges of quantum Hall samples, chiral Luttinger liquids and fractional excitations. R.
The thesis by Merce Pacios exploits properties of carbon nanotubes to design novel nanodevices. The prominent electrochemical properties of carbon nanotubes are used to design diverse electrode configurations. In combination with the chemical properties and (bio)functionalization versatility, these materials prove to be very appropriate for the development of electrochemical biosensors. Furthermore, this work also evaluates the semiconductor character of carbon nanotubes (CNT) for sensor technology by using a field effect transistor configuration (FET). The CNT-FET device has been optimized for operating in liquid environments. These electrochemical and electronic CNT devices are highly promising for biomolecule sensing and for the monitoring of biological processes, which can in the future lead to applications for rapid and simple diagnostics in fields such as biotechnology, clinical and environmental research.
During a century, from the Van der Waals mean field description (1874) of gases to the introduction of renormalization group (RG techniques 1970), thermodynamics and statistical physics were just unable to account for the incredible universality which was observed in numerous critical phenomena. The great success of RG techniques is not only to solve perfectly this challenge of critical behaviour in thermal transitions but to introduce extremely useful tools in a wide field of daily situations where a system exhibits scale invariance. The introduction of scaling, scale invariance and universality concepts has been a significant turn in modern physics and more generally in natural sciences. Since then, a new "physics of scaling laws and critical exponents", rooted in scaling approaches, allows quantitative descriptions of numerous phenomena, ranging from phase transitions to earthquakes, polymer conformations, heartbeat rhythm, diffusion, interface growth and roughening, DNA sequence, dynamical systems, chaos and turbulence. The chapters are jointly written by an experimentalist and a theorist. This book aims at a pedagogical overview, offering to the students and researchers a thorough conceptual background and a simple account of a wide range of applications. It presents a complete tour of both the formal advances and experimental results associated with the notion of scaling, in physics, chemistry and biology.
This book describes the key theoretical techniques for semiconductor research to quantitatively calculate and simulate the properties. It presents particular techniques to study novel semiconductor materials, such as 2D heterostructures, quantum wires, quantum dots and nitrogen containing III-V alloys. The book is aimed primarily at newcomers working in the field of semiconductor physics to give guidance in theory and experiment. The theoretical techniques for electronic and optoelectronic devices are explained in detail.
The transmission speed of data communication systems is forecast to increase exponentially over the next decade. Development of both Si-based high-speed drivers as well as III-V-semiconductor-based high-speed vertical cavity surface emitting lasers (VCSELs) are prerequisites for future ultrahigh data-rate systems. This thesis presents: - a survey of the present state of the art of VCSELs - a systematic investigation of the various effects limiting present VCSELs - a catalogue of solutions to overcome present limits - detailed progress in modelling, fabricating and testing the currently most advanced VCSELs at the two commercially most important wavelengths.
The problem of conventional, low-temperature superconductivity has been regarded as solved since the seminal work of Bardeen, Cooper, and Schrieffer (BCS) more than 50 years ago. However, the theory does not allow accurate predictions of some of the most fundamental properties of a superconductor, including the superconducting energy gap on the Fermi surface. This thesis describes the development and scientific implementation of a new experimental method that puts this old problem into an entirely new light. The nominee has made major contributions to the development and implementation of a new experimental method that enhances the resolution of spectroscopic experiments on dispersive lattice-vibrational excitations (the "glue" responsible for Cooper pairing of electrons in conventional superconductors) by more than two orders of magnitude. Using this method,he has discovered an unexpected relationship between the superconducting energy gap and the geometry of the Fermi surface in the normal state, both of which leave subtle imprints in the lattice vibrations that could not be resolved by conventional spectroscopic methods. He has confirmed this relationship on two elemental superconductors and on a series of metallic alloys. This indicates that a mechanism qualitatively beyond the standard BCS theory determines the magnitude and anisotropy of the superconducting gap.
This thesis details the significant progress made in improving the performance of organic transistors and the network conductivity of carbon nanotubes. The first section investigates organic semiconductor nucleation and growth on the most common dielectric surface used to fabricate organic thin film transistors. The nucleation and growth of the semiconductor was determined to be a critical factor affecting the device performance. Excellent dielectric modification layers, which promote desirable semiconductor growth leading to high conductivity were identified, and a technologically relevant deposition technique was developed to fabricate high quality dielectric modification layers over large areas. This may represent an important step towards the realization of large area organic circuity. In the final section, lessons learned from studying organic semiconductor nucleation and growth were utilized to improve the conductivity of carbon nanotube networks. Selective nucleation of materials at the junctions between nanotubes in the network significantly decreased the network's sheet resistance. The resulting networks may be promising candidates for transparent electrodes with a variety of optoelectronic applications.
For emerging energy saving technologies superconducting materials with superior performance are needed. Such materials can be developed by manipulating the "elementary building blocks" through nanostructuring. For superconductivity the "elementary blocks" are Cooper pair and fluxon (vortex). This book presents new ways how to modify superconductivity and vortex matter through nanostructuring and the use of nanoscale magnetic templates. The basic nano-effects, vortex and vortex-antivortex patterns, vortex dynamics, Josephson phenomena, critical currents, and interplay between superconductivity and ferromagnetism at the nanoscale are discussed. Potential applications of nanostructured superconductors are also presented in the book.
The International Winter School on Electronic Properties of Conjugated Polymers held March 14-21,1987, in Kirchberg (Austria) was a sequel to a meeting held in Kirchberg two years before on a similar subject. The 1987 winter school was organized in cooperation with the "Bundesministerium fiir Wissenschaft und Forschung" in Austria and the "Bundesministerium fiir Forschung und Technologie" in the Federal Republic of Germany. The basic idea of the meeting was to provide an opportunity for experienced scientists from universities and industry to discuss their most recent re- sults and for students and young scientists to inform themselves about the present state of the research in this field. As in 1985, the scientific interest was concentrated on the electronic structure of various conjugated polymers and related compounds. The focus of interest in the field now appears to have broadened and cov- ers not only conductivity and relaxation phenomena of polyacetylene but also nonlinear optical properties, highly oriented and single-crystal poly- mers, and electrochemical and opto-electrochemical properties of special materials such as polypyrrole and polyaniline. Exciting results on conduc- tivity - the mass specific conductivity (i.e., the conductivity divided by the density) of polyacetylene is more than twice that of copper (!) - and a detailed interpretation of the meaning of conjugation length are reported.
Physical properties and models of electronic structure are analyzed for a new class of high-TC superconductors which belong to iron-based layered compounds. Despite their variable chemical composition and differences in the crystal structure, these compounds possess similar physical characteristics, due to electron carriers in the FeAs layers and the interaction of these carriers with fluctuations of the magnetic order. A tremendous interest towards these materials is explained by the prospects of their practical use. In this monograph, a full picture of the formation of physical properties of these materials, in the context of existing theory models and electron structure studies, is given. The book is aimed at a broad circle of readers: physicists who study electronic properties of the FeAs compounds, chemists who synthesize them and specialists in the field of electronic structure calculations in solids. It is helpful not only to researchers active in the fields of superconductivity and magnetism, but also for graduate and postgraduate students and all those who would like to get acquaintained with this vivid area of the materials science.
This book provides for the first time a good understanding of the etching profile technologies that do not disturb the plasma. Three types of sensors are introduced: on-wafer UV sensors, on-wafer charge-up sensors and on-wafer sheath-shape sensors in the plasma processing and prediction system of real etching profiles based on monitoring data. Readers are made familiar with these sensors, which can measure real plasma process surface conditions such as defect generations due to UV-irradiation, ion flight direction due to charge-up voltage in high-aspect ratio structures and ion sheath conditions at the plasma/surface interface. The plasma etching profile realistically predicted by a computer simulation based on output data from these sensors is described. |
You may like...
Group-target Tracking
Wen-dong Geng, Yuan-qin Wang, …
Hardcover
|