Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Electronic devices & materials > Semi-conductors & super-conductors
The study of the spontaneous formation of nanostructures in single crystals of several compounds is now a major area of research in strongly correlated electrons. These structures appear to originate in the competition of phases. The book addresses nanoscale phase separation, focusing on the manganese oxides known as manganites that have the colossal magnetoresistance (CMR) effect of potential relevance for device applications. It is argued that the nanostructures are at the heart of the CMR phenomenon. The book contains updated information on manganite research directed to experts, both theorists and experimentalists. However, graduate students or postdocs will find considerable introductory material, including elements of computational physics.
This first book on pulsed magnet design deals with the design of pulsed, non-destructive coils for the generation of high magnetic fields. It provides readers with a concise and comprehensive text describing every aspect of coil construction.
This text presents an overview of the electronic transport phenomena including high-Tc superconductivity and colossal magnetoresistance. It concisely reviews all the conducting oxides, discussing in detail nine representative oxides. More than 1200 references serve as a convenient guidepost to proceed into this vast research field.
In contrast to research on the fundamental mechanisms of High-Temperature Superconductivity, in recent years we have seen enormous developments in the fabrication and application of High-Tc-superconductors. The two volumes of High Temperature Superconductivity provide a survey of the state of the technology and engineering applications of these materials. They comprise extended original research papers and technical review articles written by physicists, chemists, materials scientists and engineers, all of them noted experts in their fields. The interdisciplinary and strictly application-oriented coverage should benefit graduate students and academic researchers in the mentioned areas as well as industrial experts. Volume 1 "Materials" focuses on major technical advancements in High-Tc materials processing for applications. Volume 2 "Engineering Applications" covers numerous application areas where High-Tc superconductors are making tremendous impact.
In contrast to research on the fundamental mechanisms of High-Temperature Superconductivity, in recent years we have seen enormous developments in the fabrication and application of High-Tc-superconductors. The two volumes of High Temperature Superconductivity provide a survey of the state of the technology and engineering applications of these materials. They comprise extended original research papers and technical review articles written by physicists, chemists, materials scientists and engineers, all of them noted experts in their fields. The interdisciplinary and strictly application-oriented coverage should benefit graduate students and academic researchers in the mentioned areas as well as industrial experts. Volume 1 "Materials" focuses on major technical advancements in High-Tc materials processing for applications. Volume 2 "Engineering Applications" covers numerous application areas where High-Tc superconductors are making tremendous impact.
Presents a modern treatment of the physics of vortex matter, mainly applied to unconventional superconductors and superfluids but with extensions to other areas of physics.
It has been almost thirty years since the publication of a book that is entirely dedicated to the theory, description, characterization and measurement of the thermal conductivity of solids. The recent discovery of new materials which possess more complex crystal structures and thus more complicated phonon scattering mechanisms have brought innovative challenges to the theory and experimental understanding of these new materials. With the development of new and novel solid materials and new measurement techniques, this book will serve as a current and extensive resource to the next generation researchers in the field of thermal conductivity. This book is a valuable resource for research groups and special topics courses (8-10 students), for 1st or 2nd year graduate level courses in Thermal Properties of Solids, special topics courses in Thermal Conductivity, Superconductors and Magnetic Materials, and to researchers in Thermoelectrics, Thermal Barrier Materials and Solid State Physics.
This book, featuring the most comprehensive treatment of Josephson junctions ever published, describes superconductor/two-dimensional-electron-gas (2DEG) structures, providing a better understanding of their transport properties. It also discusses the control of junctions using gate electrodes or injection currents, and the physical effects observed in these junctions.
This second edition has been brought up to date by the inclusion of an extensive new chapter on aspects relevant to high-temperature superconductors. The new edition provides researchers, engineers and other scientists with an introduction to the field and makes useful supplementary reading for graduate students in low-temperature physics.
The book develops a comprehensive understanding of the surface impedance of the oxide high-temperature superconductors in comparison with the conventional superconductor Nb3Sn. Linear and nonlinear microwave responses are treated separately, both in terms of models, theories or numerical approaches and in terms of experimental results. The theoretical treatment connects fundamental aspects of superconductivity to the specific high-frequency properties. The experimental data review the state of the art, as reported by many international groups. The book describes further the main features of appropriate preparation, handling, mounting, and refrigeration techniques, and finally discusses possible applications in passive and active microwave devices.
Most conventional cryogenic refrigerators and liquefiers operate with pure fluids, the major exception being natural gas liquefiers that use mixed refrigerant processes. The fundamental aspects of mixed refrigerant processes, though very innovative, have not received the due attention in open literature in view of commercial interests. Hundreds of patents exist on different aspects of mixed refrigerant processes. However, it is difficult to piece together the existing information to choose an appropriate process and an optimum composition or a given application. The aim of the book is to teach (a.) the need for refrigerant mixtures, (b.) the type of mixtures that can be used for different refrigeration and liquefaction applications, (c.) the different processes that can be used and (d.) the methods to be adopted for choosing the components of a mixture and their concentration for different applications.
The fact that magnetite (Fe304) was already known in the Greek era as a peculiar mineral is indicative of the long history of transition metal oxides as useful materials. The discovery of high-temperature superconductivity in 1986 has renewed interest in transition metal oxides. High-temperature su perconductors are all cuprates. Why is it? To answer to this question, we must understand the electronic states in the cuprates. Transition metal oxides are also familiar as magnets. They might be found stuck on the door of your kitchen refrigerator. Magnetic materials are valuable not only as magnets but as electronics materials. Manganites have received special attention recently because of their extremely large magnetoresistance, an effect so large that it is called colossal magnetoresistance (CMR). What is the difference between high-temperature superconducting cuprates and CMR manganites? Elements with incomplete d shells in the periodic table are called tran sition elements. Among them, the following eight elements with the atomic numbers from 22 to 29, i. e., Ti, V, Cr, Mn, Fe, Co, Ni and Cu are the most im portant. These elements make compounds with oxygen and present a variety of properties. High-temperature superconductivity and CMR are examples. Most of the textbooks on magnetism discuss the magnetic properties of transition metal oxides. However, when one studies magnetism using tradi tional textbooks, one finds that the transport properties are not introduced in the initial stages."
This third edition has been thoroughly revised and updated. In particular it now includes an extensive discussion of the band lineup at semiconductor interfaces. The unifying concept is the continuum of interface-induced gap states.
This research monograph discusses the close correlation between the magnetic and structural properties of thin films in the context of numerous examples of epitaxial metal films, while emphasis is laid on the stabilization of novel structures compared to the bulk material. Further options, possibilities, and limits for applications are given. Techniques for the characterization of thin films are addressed as well.
This is a benchmark reference work on Cryogenic Engineering which chronicles the major developments in the field. Starting with an historical background, this book reviews the development of data resources now available for cryogenic fields and properties of materials. It presents the latest changes in cryopreservation and the advances over the past 50 years. The book also highlights an exceptional reference listing to provide referral to more details.
This book presents written versions of selected invited lectures from the spring meeting of the Arbeitskreis Festkorperphysik of the Deutsche Physikalische Gesellschaft which was held from 27 to 31 March 2006 in Dresden, Germany. Many topical talks given at the numerous symposia are included. Most of these were organized collaboratively by several of the divisions of the Arbeitskreis. The book presents, to some extent, the status of the field of solid-state physics in 2006 not only in Germany but also internationally."
This unified overview of recent progress in a growing, multi-disciplinary field places special emphasis on the industrial applications of magnetic multilayered materials. The text describes a wide range of physical aspects, together with experimental and theoretical methods.
The 2001 Spring Meeting of the 65th Deutsche Physikalische Gesellschaft was held together with the 65. Physikertagung, in Hamburg, during the pe riod March 26 30 2001. With more than 3500 conference attendees, a record has again been achieved after several years of stabilisation in participation. This proves the continuing and now even increasing, attraction of solid state physics, especially for young colleagues who often discuss for the first time their scientific results in public at this meeting. More than 2600 scientific pa pers were presented orally, as well as posters, among them about 120 invited lectures from Germany and from abroad. This Volume 41 of "Advances in Solid State Physics" contains the written versions of half of the latter. We nevertheless hope that the book truly reflects the current state of the field. Amazingly enough, the majority of the papers as well as the discussions at the meeting, concentrated on the nanostructured solid state. This re flects the currently extremely intensive quest for developing the electronic and magnetic device generations of the future, which stimulates science be sides the challenge of the unknown as has always been the case since the very beginning of Solid State Physics about 100 years ago.
Since the discovery of high temperature superconductors the scientific com nmnity has been very active in research on material and system development as well as on the basic understanding of the mechanism of superconductiv ity at high transition temperatures. Industrial groups joined in very soon as with these new materials the prospects for commercial application of super conductivity seemed to be more promising than ever. Materials processing was divided into film deposition and bulk preparation techniques, the latter including conductor fabrication and melt growth of monolithic samples as well. Because of the high impact of possible applications in energy technol ogy, wire and tape fabrication of the BSCCO superconductors is one of the most important fields, in addition to thin film technology for mobile comuni cation. Only since processes like IBAD and RABiTS TM were invented have film deposition techniques also become important for energy technology. In order to produce suitable conductors with material properties which meet the challenge imposed by energy technology, detailed understanding of the phase formation and physical properties of the high temperature super conductors is necessary. The goal of this book is on one hand to provide the basic information on phase formation and physical properties, and to give a short overview of the state of the art in conductor preparation and character ization. On the other hand it contains the author's own results in the field of preparation and characterization.
The motto of connectivity and superconductivity is that the solutions of the Ginzburg-Landau equations are qualitatively in?uenced by the topology of the boundaries. Special attention is given to the "zero set,"the set of the positions (usually known as "quantum vortices") where the order parameter vanishes. The paradigm of connectivity and superconductivity is the Little- Parks e?ect, discussed in most textbooks on superconductivity. This volume is intended to serve as a reference book for graduate students and researchers in physics or mathematics interested in superconductivity, or in the Schr] odinger equation as a limiting case of the Ginzburg-Landau equations. The e?ects considered here usually become important in the regime where the coherence length is of the order of the dimensions of the sample. While in the Little-Parks days a lot of ingenuity was required to achieve this regime, present microelectronic techniques have transformed it into a routine. Mo- over, measurement and visualization techniques are developing at a pace which makes it reasonable to expect veri?cation of distributions, and not only of global properties. Activity in the ?eld has grown and diversi?ed substantially in recent years. We have therefore invited experts ranging from experimental and theoretical physicists to pure and applied mathematicians to contribute articles for this book. While the skeleton of the book deals with superconductivity, micron- works and generalizations of the Little-Parks situation, there are also articles which deal with applications of the Ginzburg-Landau formalism to several fundamental topics, such as quantum coherence, cosmology, and questions in materials science."
The last two years have witnessed a continuation in the breakthrough shift toward pulse tube cryocoolers for long-life, high-reliability cryocooler applications. New this year are papers de scribing the development of very large pulse tube cryocoolers to provide up to 1500 watts of cooling for industrial applications such as cooling the superconducting magnets of Mag-lev trains, coolmg superconducting cables for the power mdustry, and liquefymg natural gas. Pulse tube coolers can be driven by several competing compressor technologies. One class of pulse tube coolers is referred to as "Stirling type" because they are based on the linear Oxford Stirling-cooler type compressor; these generally provide coolmg m the 30 to 100 K temperature range and operate ^t frequencies from 30 to 60 Hz. A second type of pulse tube cooler is the so-called "Gifford-McMahon type. " Pulse tube coolers of this type use a G-M type compressor and lower frequency operation (~1 Hz) to achieve temperatures in the 2 to 10 K temperature range. The third type of pulse tube cooler is driven by a thermoacoustic oscillator, a heat engine that functions well in remote environments where electricity is not readily available. All three types are described, and in total, nearly half of this proceedings covers new developments in the pulse tube arena. Complementing the work on low-temperature pulse tube and Gifford-McMahon cryocoolers is substantial continued progress on rare earth regenerator materials.
This is an introduction to electron holography, a newly developed technique for observing and measuring microscopic structures of matter and fields using the wave nature of electrons. It describes principles, experimental details, and observation examples for vortices in superconductors, the magnetic domain structure in ferromagnets, and for fundamental phenomena of quantum mechanics.
Closing a gap in the literature, this volume is intended both as an introductory text at postgraduate level and as a modern, comprehensive reference for researchers in the field. Provides a full working description of the main fundamental tools in the theorists toolbox which have proven themselves on the field of quantum magnetism in recent years. Concludes by focusing on the most important cuurent materials form an experimental viewpoint, thus linking back to the initial theoretical concepts.
This book presents a theory for unconventional superconductivity
driven by spin excitations. Using the Hubbard Hamiltonian and a
self-consistent treatment of the spin excitations, the interplay
between magnetism and superconductivity in various unconventional
superconductors is discussed. In particular, the monograph applies
this theory for Cooper-pairing due to the exchange of spin
fluctuations to the case of singlet pairing in hole- and
electron-doped high-Tc superconductors, and to triplet pairing
in
The 2007 Spring Meeting of the Arbeitskreis Festkorperphysik was held in Regensburg, Germany, March 2007, in conjunction with the Deutsche Physikalische Gesellschaft. It was one of the largest physics meetings in Europe. The present volume 47 of the Advances in Solid State Physics contains written versions of a large number of the invited talks and gives an overview of the present status of solid state physics where low-dimensional systems are dominating." |
You may like...
Charge Transport in Low Dimensional…
Vito Dario Camiola, Giovanni Mascali, …
Hardcover
R2,837
Discovery Miles 28 370
Electric Power Conversion and…
Majid Nayeripour, Mahdi Mansouri
Hardcover
Photon Counting Detectors for X-ray…
Hiroaki Hayashi, Natsumi Kimoto, …
Hardcover
R2,656
Discovery Miles 26 560
Metal Halide Perovskites: Synthesis…
Jin Zhong Zhang, Zhiguo Xia, …
Hardcover
R2,525
Discovery Miles 25 250
Properties, Techniques, and Applications…
Subhash Chander, Nirmala Kumari Jangid
Hardcover
R4,849
Discovery Miles 48 490
|