![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Electronic devices & materials > Semi-conductors & super-conductors
Power Electronic Semiconductor Switches is the successor to Professor Ramshaw's widely-used Power Electronics. The text has been completely re-written and expanded to focus on semiconductor switches, and to take into account advances in the field since the publication of Power Electronics and changes in electrical and electronic engineering syllabuses.
After a foreword by Klaus von Klitzing, the first chapters of this book discuss the prehistory and the theoretical basis as well as the implications of the discovery of the Quantum Hall effect on superconductivity, superfluidity, and metrology, including experimentation. The second half of this volume is concerned with the theory of and experiments on the many body problem posed by fractional effect. Specific unsolved problems are mentioned throughout the book and a summary is made in the final chapter. The quantum Hall effect was discovered on about the hundredth anniversary of Hall's original work, and the finding was announced in 1980 by von Klitzing, Dorda and Pepper. Klaus von KIitzing was awarded the 1985 Nobel prize in physics for this discovery.
The primary thrust of very large scale integration (VLS ) is the miniaturization of devices to increase packing density, achieve higher speed, and consume lower power. The fabrication of integrated circuits containing in excess of four million components per chip with design rules in the submicron range has now been made possible by the introduction of innovative circuit designs and the development of new microelectronic materials and processes. This book addresses the latter challenge by assessing the current status of the science and technology associated with the production of VLSI silicon circuits. It represents the cumulative effort of experts from academia and industry who have come together to blend their expertise into a tutorial overview and cohesive update of this rapidly expanding field. A balance of fundamental and applied contributions cover the basics of microelectronics materials and process engineering. Subjects in materials science include silicon, silicides, resists, dielectrics, and interconnect metallization. Subjects in process engineering include crystal growth, epitaxy, oxidation, thin film deposition, fine-line lithography, dry etching, ion implantation, and diffusion. Other related topics such as process simulation, defects phenomena, and diagnostic techniques are also included. This book is the result of a NATO-sponsored Advanced Study Institute (AS ) held in Castelvecchio Pascoli, Italy. Invited speakers at this institute provided manuscripts which were edited, updated, and integrated with other contributions solicited from non-participants to this AS .
The Winter School held in Les Houches on March 12-21, 1985 was devoted to Semiconductor Heterojunctions and Superlattices, a topic which is recognized as being now one of the most interesting and active fields in semiconductor physics. In fact, following the pioneering work of Esaki and Tsu in 1970, the study of these two-dimensional semiconductor heterostructures has developed rapidly, both from the point of view of basic physics and of applications. For instance, modulation-doped heterojunctions are nowadays currently used to investigate the quantum Hall effect and to make very fast transistors. This book contains the lectures presented at this Winter School, showing in particular that many aspects of semiconductor heterojunctions and super lattices were treated, extending from the fabrication of these two-dimensional systems to their basic properties and applications in micro-and opto-electron ics. Among the subjects which were covered, one can quote as examples: molecular beam epitaxy and metallorganic chemical vapor deposition of semi conductor compounds; band structure of superlattices; properties of elec trons in heterojunctions, including the fractional quantum Hall effect; opti cal properties of two-dimensional heterostructures; quantum well lasers; and two-dimensional electron gas field effect transistors. It is clear that two-dimensional semiconductor systems are raising a great deal of interest in many industrial and university laboratories. From the number of applications which were received and from the reactions of the participants, it can certainly be asserted that this School corresponded to a need and came at the right time."
This volume provides a comprehensive introduction to the theory of d-wave superconductivity, focused on d-wave pairing symmetry and its physical consequences in the superconducting state. It discusses the basic concepts and methodologies related to high-temperature superconductivity and compares experimental phenomena with theoretical predictions. After a brief introduction to the basic theory of superconductivity and several models for high-temperature superconductivity, this book presents detailed derivations and explanations for various single-particle and collective properties of d-wave superconductors that can be monitored experimentally, including thermodynamics, angular-resolved photo-emission, single-particle and Josephson tunnelling, impurity scattering, magnetic and superfluid responses, transport and optical properties and mixed states. Various universal behaviours of d-wave superconductors are highlighted. Aimed primarily at graduate students and research scientists in condensed matter and materials physics, this text enables readers to understand systematically the physical properties of high-temperature superconductors.
This first systematic, authoritative and thorough treatment in one
comprehensive volume presents the fundamentals and technologies of
the topic, elucidating all aspects of ZnO materials and devices.
This brand-new monograph on organic light emitting diodes, edited by a pioneer, and written by front-line researchers from academia and industry, provides access to the latest findings in this rapidly growing field. More than ten contributions cover all areas -- from theory and basic principles, to different emitter materials and applications in production.
This book covers the optical and electrical properties of nanoscale materials with an emphasis on how new and unique material properties result from the special nature of their electronic band structure. Beginning with a review of the optical and solid state physics needed for understanding optical and electrical properties, the book then introduces the electronic band structure of solids and discusses the effect of spin orbit coupling on the valence band, which is critical for understanding the optical properties of most nanoscale materials. Excitonic effects and excitons are also presented along with their effect on optical absorption. 2D materials, such as graphene and transition metal dichalcogenides, are host to unique electrical properties resulting from the electronic band structure. This book devotes significant attention to the optical and electrical properties of 2D and topological materials with an emphasis on optical measurements, electrical characterization of carrier transport, and a discussion of the electronic band structures using a tight binding approach. This book succinctly compiles useful fundamental and practical information from one of the fastest growing research topics in materials science and is thus an essential compendium for both students and researchers in this rapidly moving field.
Explores theoretical and experimental studies of the properties of one-dimensional photonic crystals. The authors also consider the possibilities of controlling the characteristics of microwave photonic crystals with the help of electric and magnetic fields and provide examples of new fields of application of microwave photonic crystals. They review measurements of the parameters of layered structures containing nanometer-sized semiconductor and metal layers and explore microwave-compatible loads. Written for specialists and scientists working in the fields of radiophysics, microwave solid-state electronics, and microwave photonics. Key selling features: Presents studies of theoretical and experimental properties of one-dimensional photonic crystals Analyzes microwave photonic crystals based on flat transmission lines. Explores the use of electric and magnetic fields to control crystal characteristics. Reviews applications of photonic crystals in semiconductors. Examines one-dimensional microwave photonic crystals based on rectangular wave guides.
This comprehensive volume provides an in-depth discussion of the fundamentals of cleaning and surface conditioning of semiconductor applications such as high-k/metal gate cleaning, copper/low-k cleaning, high dose implant stripping, and silicon and SiGe passivation. The theory and fundamental physics associated with wet etching and wet cleaning is reviewed, plus the surface and colloidal aspects of wet processing. Formulation development practices and methodology are presented along with the applications for preventing copper corrosion, cleaning aluminum lines, and other sensitive layers. This is a must-have reference for any engineer or manager associated with using or supplying cleaning and contamination free technologies for semiconductor manufacturing. From the Reviews... "This handbook will be a valuable resource for many academic
libraries. Many engineering librarians who work with a variety of
programs (including, but not limited to Materials Engineering)
should include this work in their collection. My recommendation is
to add this work to any collection that serves a campus with a
materials/manufacturing/electrical/computer engineering programs
and campuses with departments of physics and/or chemistry with
large graduate-level enrollment."
Fault analysis of highly-integrated semiconductor circuits has become an indispensable discipline in the optimization of product quality. Integrated Circuit Failure Analysis describes state-of-the-art procedures for exposing suspected failure sites in semiconductor devices. The author adopts a hands-on problem-oriented approach, founded on many years of practical experience, complemented by the explanation of basic theoretical principles. Features include: Advanced methods in device preparation and technical procedures for package inspection and semiconductor reliability. • Illustration of chip isolation and step-by-step delayering of chips by wet chemical and modern plasma dry etching techniques. • Particular analysis of bipolar and MOS circuits, although techniques are equally relevant to other semiconductors. • Advice on the choice of suitable laboratory equipment. • Numerous photographs and drawings providing guidance for checking results. Focusing on modern techniques, this practical text will enable both academic and industrial researchers and IC designers to expand the range of analytical and preparative methods at their disposal and to adapt to the needs of new technologies.
This book describes the physical mechanism of high-frequency (radio-frequency) capacitive discharge (RFCD) of low and medium pressure and the properties of discharge plasma in detail. The main properties and characteristics of RFCD, the features of electric breakdown in a high-frequency field are also investigated. The properties of near-electrode layers of a spatial discharge, the nature of the electric field in them, and the processes of charge transport to electrodes are explored. The work is intended for scientists engaged in gas discharge physics and low-temperature plasmas, graduate students and students of physics, physical chemistry, and relevant specialties.
Das Buch beschreibt die Konzepte siliziumbasierter MOS-Bauelemente f r Logikanwendungen (CMOS), Speicheranwendungen (DRAM, SRAM, EEPROM) und leistungselektronische Anwendungen. Der Autor untersucht die Quellen, die in den vergangenen 30 Jahren diskutiert wurden. Er beschreibt, wie die einzelnen Konzepte technologisch umgesetzt wurden und geht auf die Vor- und Nachteile der Konzepte ein. Er erl utert die Funktionsweise und Charakteristiken der elektronischen Bauelemente, die mit dem jeweiligen Konzept realisiert wurden. Das Buch ist besonders geeignet f r Ingenieure und Physiker, die sich mit neuartigen bzw. alternativen Bauelementarchitekturen und deren Entwicklung besch ftigen.
Helps readers understand the physics behind MOS devices for low-voltage and low-energy applications * Based on timely published and unpublished work written by expert authors * Discusses various promising MOS devices applicable to low-energy environmental and biomedical uses * Describes the physical effects (quantum, tunneling) of MOS devices * Demonstrates the performance of devices, helping readers to choose right devices applicable to an industrial or consumer environment * Addresses some Ge-based devices and other compound-material-based devices for high-frequency applications and future development of high performance devices. "Seemingly innocuous everyday devices such as smartphones, tablets and services such as on-line gaming or internet keyword searches consume vast amounts of energy. Even when in standby mode, all these devices consume energy. The upcoming 'Internet of Things' (IoT) is expected to deploy 60 billion electronic devices spread out in our homes, cars and cities. Britain is already consuming up to 16 per cent of all its power through internet use and this rate is doubling every four years. According to The UK's Daily Mail May (2015), if usage rates continue, all of Britain's power supply could be consumed by internet use in just 20 years. In 2013, U.S. data centers consumed an estimated 91 billion kilowatt-hours of electricity, corresponding to the power generated by seventeen 1000-megawatt nuclear power plants. Data center electricity consumption is projected to increase to roughly 140 billion kilowatt-hours annually by 2020, the equivalent annual output of 50 nuclear power plants." Natural Resources Defense Council, USA, Feb. 2015 All these examples stress the urgent need for developing electronic devices that consume as little energy as possible. The book MOS Devices for Low-Voltage and Low-Energy Applications explores the different transistor options that can be utilized to achieve that goal. It describes in detail the physics and performance of transistors that can be operated at low voltage and consume little power, such as subthreshold operation in bulk transistors, fully depleted SOI devices, tunnel FETs, multigate and gate-all-around MOSFETs. Examples of low-energy circuits making use of these devices are given as well. "The book MOS Devices for Low-Voltage and Low-Energy Applications is a good reference for graduate students, researchers, semiconductor and electrical engineers who will design the electronic systems of tomorrow." Dr. Jean-Pierre Colinge, Taiwan Semiconductor Manufacturing Company (TSMC) "The authors present a creative way to show how different MOS devices can be used for low-voltage and low-power applications. They start with Bulk MOSFET, following with SOI MOSFET, FinFET, gate-all-around MOSFET, Tunnel-FET and others. It is presented the physics behind the devices, models, simulations, experimental results and applications. This book is interesting for researchers, graduate and undergraduate students. The low-energy field is an important topic for integrated circuits in the future and none can stay out of this." Prof. Joao A. Martino, University of Sao Paulo, Brazil
This Springer Handbook comprehensively covers the topic of semiconductor devices, embracing all aspects from theoretical background to fabrication, modeling, and applications. Nearly 100 leading scientists from industry and academia were selected to write the handbook's chapters, which were conceived for professionals and practitioners, material scientists, physicists and electrical engineers working at universities, industrial R&D, and manufacturers. Starting from the description of the relevant technological aspects and fabrication steps, the handbook proceeds with a section fully devoted to the main conventional semiconductor devices like, e.g., bipolar transistors and MOS capacitors and transistors, used in the production of the standard integrated circuits, and the corresponding physical models. In the subsequent chapters, the scaling issues of the semiconductor-device technology are addressed, followed by the description of novel concept-based semiconductor devices. The last section illustrates the numerical simulation methods ranging from the fabrication processes to the device performances. Each chapter is self-contained, and refers to related topics treated in other chapters when necessary, so that the reader interested in a specific subject can easily identify a personal reading path through the vast contents of the handbook.
The handbook comprehensively covers the field of inorganic photochemistry from the fundamentals to the main applications. The first section of the book describes the historical development of inorganic photochemistry, along with the fundamentals related to this multidisciplinary scientific field. The main experimental techniques employed in state-of-art studies are described in detail in the second section followed by a third section including theoretical investigations in the field. In the next three sections, the photophysical and photochemical properties of coordination compounds, supramolecular systems and inorganic semiconductors are summarized by experts on these materials. Finally, the application of photoactive inorganic compounds in key sectors of our society is highlighted. The sections cover applications in bioimaging and sensing, drug delivery and cancer therapy, solar energy conversion to electricity and fuels, organic synthesis, environmental remediation and optoelectronics among others. The chapters provide a concise overview of the main achievements in the recent years and highlight the challenges for future research. This handbook offers a unique compilation for practitioners of inorganic photochemistry in both industry and academia.
A companion volume to Ternary Alloys Based on II-VI Semiconductor Compounds (CRC Press, 2013) and Quaternary Alloys Based on II-VI Semiconductor Compounds (CRC Press, 2014), Multinary Alloys Based on II-VI Semiconductors provides up-to-date experimental and theoretical information on phase relations based on II-VI semiconductor systems with five or more components. Featuring detailed figures and extensive references, this book: Delivers a critical evaluation of many industrially important systems presented in the form of two-dimensional sections for the condensed phases Summarizes the data from the last 15-20 years of literature on the study of organometallic compounds, which include zinc, cadmium, or mercury and sulfur, selenium, or tellurium Classifies all materials according to the periodic table groups of their constituent atoms, that is, possible combinations of Zn, Cd, and Hg with chalcogens S, Se, and Te and additional components in the order of their group number Specifies the diagram type, possible phase transformations and physical-chemical interaction of the components, methods of equilibrium investigation, thermodynamic characteristics, and methods for sample preparation in each multinary database description Multinary Alloys Based on II-VI Semiconductors contains valuable material useful for obtaining nanoscale II-VI semiconductors and for preparing thin films of these semiconductor materials, as well as for exploring the biological and medicinal applications of organometallic compounds, and for identifying new compounds with necessary properties.
Electrostatic discharge (ESD) continues to impact semiconductor manufacturing, semiconductor components and systems, as technologies scale from micro- to nano electronics. This book" "introduces the fundamentals of ESD, electrical overstress (EOS), electromagnetic interference (EMI), electromagnetic compatibility (EMC), and latchup, as well as provides a coherent overview of the semiconductor manufacturing environment and the final system assembly. It provides an illuminating look into the integration of ESD protection networks followed by examples in specific technologies, circuits, and chips. The text is unique in covering semiconductor chip manufacturing issues, ESD semiconductor chip design, and system problems confronted today as well as the future of ESD phenomena and nano-technology. Look inside for extensive coverage on: The fundamentals of electrostatics, triboelectric charging, and how they relate to present day manufacturing environments of micro-electronics to nano-technology Semiconductor manufacturing handling and auditing processing to avoid ESD failures ESD, EOS, EMI, EMC, and latchup semiconductor component and system level testing to demonstrate product resilience from human body model (HBM), transmission line pulse (TLP), charged device model (CDM), human metal model (HMM), cable discharge events (CDE), to system level IEC 61000-4-2 testsESD on-chip design and process manufacturing practices and solutions to improve ESD semiconductor chip solutions, also practical off-chip ESD protection and system level solutions to provide more robust systemsSystem level concerns in servers, laptops, disk drives, cell phones, digital cameras, hand held devices, automobiles, and space applicationsExamples of ESD design for state-of-the-art technologies, including CMOS, BiCMOS, SOI, bipolar technology, high voltage CMOS (HVCMOS), RF CMOS, smart power, magnetic recording technology, micro-machines (MEMs) to nano-structures "ESD Basics: From Semiconductor Manufacturing to Product Use" complements the author's series of books on ESD protection. For those new to the field, it is an essential reference and a useful insight into the issues that confront modern technology as we enter the Nano-electronic Era.
Choice Recommended Title, July 2020 Bringing together material scattered across many disciplines, Semiconductor Radiation Detectors provides readers with a consolidated source of information on the properties of a wide range of semiconductors; their growth, characterization and the fabrication of radiation sensors with emphasis on the X- and gamma-ray regimes. It explores the promise and limitations of both the traditional and new generation of semiconductors and discusses where the future in semiconductor development and radiation detection may lie. The purpose of this book is two-fold; firstly to serve as a text book for those new to the field of semiconductors and radiation detection and measurement, and secondly as a reference book for established researchers working in related disciplines within physics and engineering. Features: The only comprehensive book covering this topic Fully up-to-date with new developments in the field Provides a wide-ranging source of further reference material
Containing the most reliable parameter values for each of these semiconductor materials, along with applicable references, these data are organized in a structured, logical way for each semiconductor material.
This book describes the application of c-axis aligned crystalline In-Ga-Zn oxide (CAAC-IGZO) technology in large-scale integration (LSI) circuits. The applications include Non-volatile Oxide Semiconductor Random Access Memory (NOSRAM), Dynamic Oxide Semiconductor Random Access Memory (DOSRAM), central processing unit (CPU), field-programmable gate array (FPGA), image sensors, and etc. The book also covers the device physics (e.g., off-state characteristics) of the CAAC-IGZO field effect transistors (FETs) and process technology for a hybrid structure of CAAC-IGZO and Si FETs. It explains an extremely low off-state current technology utilized in the LSI circuits, demonstrating reduced power consumption in LSI prototypes fabricated by the hybrid process. A further two books in the series will describe the fundamentals; and the specific application of CAAC-IGZO to LCD and OLED displays. Key features: Outlines the physics and characteristics of CAAC-IGZO FETs that contribute to favorable operations of LSI devices. Explains the application of CAAC-IGZO to LSI devices, highlighting attributes including low off-state current, low power consumption, and excellent charge retention. Describes the NOSRAM, DOSRAM, CPU, FPGA, image sensors, and etc., referring to prototype chips fabricated by a hybrid process of CAAC-IGZO and Si FETs.
Van der Waals Heterostructures A comprehensive resource systematically detailing the developments and applications of van der Waals heterostructures and devices Van der Waals Heterostructures is essential reading to understand the developments made in van der Waals heterostructures and devices in all aspects, from basic synthesis to physical analysis and heterostructures assembling to devices applications, including demonstrated applications of van der Waals heterostructure on electronics, optoelectronics, and energy conversion, such as solar energy, hydrogen energy, batteries, catalysts, biotechnology, and more. This book starts from an in-depth introduction of van der Waals interactions in layered materials and the forming of mixed-dimensional heterostructures via van der Waals force. It then comprehensively summarizes the synthetic methods, devices building processes and physical mechanism of 2D van der Waals heterostructures, and devices including 2D-2D electronics, 2D-2D optoelectronics, and mixed dimensional van der Waals heterostructures. In Van der Waals Heterostructures, readers can expect to find specific information on: The current library of 2D semiconductors and the current synthesis and performances of 2D semiconductors Controllable synthesis and assemble van der Waals heterostructures, physics of the van der Waals interface, and multi-field coupling effects 2D-2D electronics, 2D-2D optoelectronics, mixed dimensional van der Waals heterostructures, and van der Waals heterostructure applications on energy conversion Insight into future perspectives of the van der Waals heterostructures and devices with the detailed effective role of 2D materials for integrated electrical and electronic equipment
Dispersion dynamics are developed from the stable wave packet in wave mechanics. They are used first in a physical treatment of creation and annihilation, and then applied to measurements in high temperature superconductivity. The dynamics require that the negative energy solution to relativity equations implies negative rest mass in the antiparticle. Diracs positive mass for his first order equation is inconsistent with dispersion dynamics. The processing of the ceramic cuprates links the superconductivity not to the isotope effect, as in low temperature superconductors, but to chemical holes in the planar HiTc ceramics. The Hall coefficient is negative in the former case, but positive in the latter -- even though the Lorentz force can act on neither voids nor immobile ionic nuclei. Interpretation of the coefficient is an old anomaly. In fact, whether in metals, in p-type semiconductors or in HiTc ceramics, the carriers are all negatively charged. Dispersion dynamics show that the positive coefficient is a consequence of negative second derivatives in the dispersion of conduction bands in semiconductors, in certain metals and in high temperature superconductors.Existing data from HiTc compounds, especially data from processing, are reinterpreted to show how chemical and physical holes are formed. The holes that are evident in the Hall effect at normal temperatures are readily available to bond with electron pairs at lower temperatures for superconductivity. Wave functions in dispersion dynamics show how the conduction is non-resistive. The book contrasts the two types of superconductivity while uniting the mechanism in them for non-resistive behaviour.
The information revolution would have been radically different, or
impossible, without the use of the materials known generically as
semiconductors. The properties of these materials, particularly the
potential for doping with impurities to create transistors and
diodes and controlling the local potential by gates, are essential
for microelectronics. |
![]() ![]() You may like...
Cross-Conditionality Banking Regulation…
Stephany Griffith-Jones, Ennio Rodriguez
Hardcover
R2,904
Discovery Miles 29 040
Analytical Methods in Petroleum Upstream…
Cesar Ovalles, Carl E. Rechsteiner
Hardcover
R3,281
Discovery Miles 32 810
Islamic Monetary Economics - Finance and…
Taha Egri, Zeyneb Hafsa Orhan
Hardcover
R3,614
Discovery Miles 36 140
|