![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Electronic devices & materials > Semi-conductors & super-conductors
C axis Current I ~ . The (11 0) thick homoepitaxial film of 320 nm -------~ ~-=-=--==---==--==--==--- shows a very good surface flatness, which --------** sJ;1 0] suggests the unique (110) atomic plane helps 2- A [1 1 OJ dimensional epitaxial growth of YBCO films, and shows excellent high Tc. The resultant 1. 0 surface morphology of YBCO is quite different Q ,. -- R(270)=1. 60 m 0 from the (110) heteroepitaxial films of similar 0 0. 0 " thickness [11). In the case of heteroepitaxy ~ . ,,_. 1. 0 irrespective of c-axis [ 12] or a-axis oriented ~ ~. . ,. R(270)=3. 71 m 0 films [5), only thin films show flat surfaces, g 0. 0 . . Tc=92. 3K "' which, however, give usually a degraded Tc due -~ 1. 0 v v I - to lattice mismatching. In conclusion, we have ::1. ,. . . . . R(270)=31. 9 mO succeeded to grow high-quality (11 0) YBCO ~ YBCO film . . Tc=90. 7 K 0. 0 *;:: YBCO(IIO) 1 0 *d*--~ YBCO thinfilms on (11 0) YBCO single crystal substrate ~Xtt=u 1. 0 substra substrates with very flat surfaces and high Tc's. :GBP R(270)=40. 1 m 0 0. 0 LLLLL. J. . . . LL~. t-J' L-Tc=9LWO. L-! L-K LLLLL. . . . L. . I. . . . l. . . . L. L. L. J. . . . . L. L. l. . . J 50 100 150 200 250 300 0 ACKNOWLEDGMENTS Temperature (K) One of the authors (T. U. ) would like to thank Fig.
This book offers the reader a practical guide to the control and characterization of laser diode beams. Laser diodes are the most widely used lasers, accounting for 50% of the global laser market. Correct handling of laser diode beams is the key to the successful use of laser diodes, and this requires an in-depth understanding of their unique properties. Following a short introduction to the working principles of laser diodes, the book describes the basics of laser diode beams and beam propagation, including Zemax modeling of a Gaussian beam propagating through a lens. The core of the book is concerned with laser diode beam manipulations: collimating and focusing, circularization and astigmatism correction, coupling into a single mode optical fiber, diffractive optics and beam shaping, and manipulation of multi transverse mode beams. The final chapter of the book covers beam characterization methods, describing the measurement of spatial and spectral properties, including wavelength and linewidth measurement techniques. The book is a significantly revised and expanded version of the title Laser Diode Beam Basics, Manipulations and Characterizations by the same author. New topics introduced in this volume include: laser diode types and working principles, non-paraxial Gaussian beam, Zemax modeling, numerical analysis of a laser diode beam, spectral property characterization methods, and power and energy characterization techniques. The book approaches the subject in a practical way with mathematical content kept to the minimum level required, making the book a convenient reference for laser diode users.
The book is an expanded autobiography of the famous theoretical physicist Isaak Khalatnikov. He worked together with L.D. Landau at the Institute for Physical Problems lead by P.L. Kapitza. He is the co-author of L.D. Landau in a number of important works. They worked together in the frame of the so-called Nuclear Bomb Project. After the death of L.D. Landau, I.M. Khalatnikov initiated the establishment of the Institute for Theoretical Physics, named in honour of L.D. Landau, within the USSR Academy of Sciences. He headed this institute from the beginning as its Director. The institute inherited almost all traditions of the Landau scientific school and played a prominent role in the development of theoretical physics. So, this is a story about how the institute was created, how it worked, and about the life of the physicists in the "golden age" of the Soviet science. A separate chapter is devoted to todays life of the institute and the young generation of physicists working now in science. It is an historically interesting book on the development of Soviet and Russian science and presents the background of the Soviet nuclear bomb program in the cold war age. In war times, Khalatnikov was a chief of the military staff of nuclear research. He writes about the internal conditions of Soviet society, the way of operating of the Soviet authorities and ways for scientists to interact with them. It gives many interesting insights into the development of superconductivity and superfluidity. The book is written by the most experienced and best informed person among the few living Russian scientists in the environment of Landau. Many stories of the book were never published before and considered as "top secret".
Common methods of local magnetic imaging display either a high spatial resolution and relatively poor field sensitivity (MFM, Lorentz microscopy), or a relatively high field sensitivity but limited spatial resolution (scanning SQUID microscopy). Since the magnetic field of a nanoparticle or nanostructure decays rapidly with distance from the structure, the achievable spatial resolution is ultimately limited by the probe-sample separation. This thesis presents a novel method for fabricating the smallest superconducting quantum interference device (SQUID) that resides on the apex of a very sharp tip. The nanoSQUID-on-tip displays a characteristic size down to 100 nm and a field sensitivity of 10^-3 Gauss/Hz^(1/2). A scanning SQUID microsope was constructed by gluing the nanoSQUID-on-tip to a quartz tuning-fork. This enabled the nanoSQUID to be scanned within nanometers of the sample surface, providing simultaneous images of sample topography and the magnetic field distribution. This microscope represents a significant improvement over the existing scanning SQUID techniques and is expected to be able to image the spin of a single electron.
This is an exciting stage in the development of organic electronics. It is no longer an area of purely academic interest as increasingly real applications are being developed, some of which are beginning to come on-stream. Areas that have already been commercially developed or which are under intensive development include organic light emitting diodes (for flat panel displays and solid state lighting), organic photovoltaic cells, organic thin film transistors (for smart tags and flat panel displays) and sensors. Within the family of organic electronic materials, liquid crystals are relative newcomers. The first electronically conducting liquid crystals were reported in 1988 but already a substantial literature has developed. The advantage of liquid crystalline semiconductors is that they have the easy processability of amorphous and polymeric semiconductors but they usually have higher charge carrier mobilities. Their mobilities do not reach the levels seen in crystalline organics but they circumvent all of the difficult issues of controlling crystal growth and morphology. Liquid crystals self-organise, they can be aligned by fields and surface forces and, because of their fluid nature, defects in liquid crystal structures readily self-heal. With these matters in mind this is an opportune moment to bring together a volume on the subject of 'Liquid Crystalline Semiconductors'. The field is already too large to cover in a comprehensive manner so the aim has been to bring together contributions from leading researchers which cover the main areas of the chemistry (synthesis and structure/function relationships), physics (charge transport mechanisms and optical properties) and potential applications in photovoltaics, organic light emitting diodes (OLEDs) and organic field-effect transistors (OFETs). This book will provide a useful introduction to the field for those in both industry and academia and it is hoped that it will help to stimulate future developments.
This volume, intended as a contribution to the 10th birthday of high T"c"-superconductivity, conveys the essential ideas of the field and addresses researchers as well as graduate students. A special feature is the pedagogical treatment of a variety of modern computational methods to deal with non-pertubative effects in strongly correlated systems. Among the topics treated are the Hubbard models, real space renormalization group methods, quantum phase transitions, the non-linear sigma model, spin ladders and layers, and the quantum Hall effect.
This book presents a new filter design approach and concentrates on the circuit techniques that can be utilized when designing continuous-time low-pass filters in modern ultra-deep-submicron CMOS technologies for integrated wideband radio receivers. Coverage includes system-level issues related to the design and implementation of a complete single-chip radio receiver and related to the design and implementation of a filter circuit as a part of a complete single-chip radio receiver. Presents a new filter design approach, emphasizing low-voltage circuit solutions that can be implemented in modern, ultra-deep-submicron CMOS technologies;Includes filter circuit implementations designed as a part of a single-chip radio receiver in modern 1.2V 0.13um and 65nm CMOS;Describes design and implementation of a continuous-time low-pass filter for a multicarrier WCDMA base-station;Emphasizes system-level considerations throughout.
Recent advances in the fabrication of semiconductors have created almost un limited possibilities to design structures on a nanometre scale with extraordinary electronic and optoelectronic properties. The theoretical understanding of elec trical transport in such nanostructures is of utmost importance for future device applications. This represents a challenging issue of today's basic research since it requires advanced theoretical techniques to cope with the quantum limit of charge transport, ultrafast carrier dynamics and strongly nonlinear high-field ef fects. This book, which appears in the electronic materials series, presents an over view of the theoretical background and recent developments in the theory of electrical transport in semiconductor nanostructures. It contains 11 chapters which are written by experts in their fields. Starting with a tutorial introduction to the subject in Chapter 1, it proceeds to present different approaches to transport theory. The semiclassical Boltzmann transport equation is in the centre of the next three chapters. Hydrodynamic moment equations (Chapter 2), Monte Carlo techniques (Chapter 3) and the cellular au tomaton approach (Chapter 4) are introduced and illustrated with applications to nanometre structures and device simulation. A full quantum-transport theory covering the Kubo formalism and nonequilibrium Green's functions (Chapter 5) as well as the density matrix theory (Chapter 6) is then presented.
During the last 25 years (after the growth of the first pseudomorphic GeSi strained layers on Si by Erich Kasper in Germany) we have seen a steady accu- mulation of new materials and devices with enhanced performance made pos- sible by strain. 1989-1999 have been very good years for the strained-Iayer- devices. Several breakthroughs were made in the growth and doping technology of strained layers. New devices were fabricated as a results of these break- throughs. Before the advent of strain layer epitaxy short wavelength (violet to green) and mid-IR (2 to 5 f. Lm) regions of the spectrum were not accessi- ble to the photonic devices. Short wavelength Light Emitting Diodes (LEDs) and Laser Diodes (LDs) have now been developed using III-Nitride and II-VI strained layers. Auger recombination increases rapidly as the bandgap narrows and temperature increases. Therefore it was difficult to develop mid-IR (2 to 5 f. Lm range) lasers. The effect of strain in modifying the band-structure and suppressing the Auger recombination has been most spectacular. It is due to the strain mediated band-structure engineering that mid-IR lasers with good per- formance have been fabricated in several laboratories around the world. Many devices based on strained layers have reached the market place. This book de- scribes recent work on the growth, characterization and properties o(compound semiconductors strained layers and devices fabricated using them.
This book originated from a course given at the Univcrsidad Aut6noma of Madrid in the Spring of 1994 and in the Universidad Complutense of Madrid in 1995. The goal of these courses is to give the non-specialist an introduction to some old and new ideas in the field of strongly correlated systems, in particular the problems posed by the high-1 superconducting materials. As theoretical physicists, our starting viewpoint to address the problem of strongly correlat ed ferlnion systems and related issues of modern condensed matter physics .is the renormalization group approach applied both to quantU111 field theory and statistical physics. In recent years this has become not only a powerful tool for retrieving the essential physics of interacting systems but also a link between theoretical physics and modern condensed matter physics. Furthermore, once we have this common background for dealing with apparently different prob lems, we discuss more specific topics and even phenomenological aspects of the field. In doing so we have tried to make the exposition clear and simple, with out entering into technical details but focusing ill the fundamental physics of the phenomena under study. Therefore, ve expect that our experience ll1ay have some value to other people entering this fascinating field. We have divided these notes into three parts and each part into chapters, which correspond roughly to one or two lectures. Part I, Chaps. 1-2 (A. H. V."
The emergence of highly efficient short-wavelength laser diodes based on the III-V compound semiconductor GaN has not only enabled high-density optical data storage, but is also expected to revolutionize display applications. Moreover, a variety of scientific applications in biophotonics, materials research and quantum optics can benefit from these versatile and cost-efficient laser light sources in the near-UV to green spectral range. This thesis describes the device physics of GaN-based laser diodes, together with recent efforts to achieve longer emission wavelengths and short-pulse emission. Experimental and theoretical approaches are employed to address the individual device properties and optimize the laser diodes toward the requirements of specific applications.
This monograph solely presents the Fowler-Nordheim field emission (FNFE) from semiconductors and their nanostructures. The materials considered are quantum confined non-linear optical, III-V, II-VI, Ge, Te, carbon nanotubes, PtSb2, stressed materials, Bismuth, GaP, Gallium Antimonide, II-V, Bi2Te3, III-V, II-VI, IV-VI and HgTe/CdTe superlattices with graded interfaces and effective mass superlattices under magnetic quantization and quantum wires of the aforementioned superlattices. The FNFE in opto-electronic materials and their quantum confined counterparts is studied in the presence of light waves and intense electric fields on the basis of newly formulated electron dispersion laws that control the studies of such quantum effect devices. The importance of band gap measurements in opto-electronic materials in the presence of external fields is discussed from this perspective. This monograph contains 200 open research problems which form the very core and are useful for Ph. D students and researchers. The book can also serve as a basis for a graduate course on field emission from solids.
This book presents the fabrication of optoelectronic nanodevices. The structures considered are nanowires, nanorods, hybrid semiconductor nanostructures, wide bandgap nanostructures for visible light emitters and graphene. The device applications of these structures are broadly explained. The book deals also with the characterization of semiconductor nanostructures. It appeals to researchers and graduate students.
The introduction of GaAs/ AIGaAs double heterostructure lasers has opened the door to a new age in the application of compound semiconductor materials to microwave and optical technologies. A variety and combination of semiconductor materials have been investigated and applied to present commercial uses with these devices operating at wide frequencies and wavelengths. Semiconductor modulators are typical examples of this technical evolutions and hsve been developed for commercial use. Although these have a long history to date, we are not aware of any book that details this evolution. Consequently, we have written a book to provide a comprehensive account of semiconductor modulators with emphasis on historical details and experimantal reports. The objective is to provide an up-to-date understanding of semiconductor modulators. Particular attention has been paid to multiple quantum well (MQW) modulators operating at long wavelengths, taking into account the low losses and dispersion in silica fibers occuring at around 1.3 and 1.55 mm. At the present time, MQW structures have been investigated but these have not been sufficiently developed to provide characteristic features which would be instructive enough for readers. One problem is the almost daily publication of papers on semiconductor modulators. Not only do these papers provide additional data, but they often modify the interpretations of particular concepts. Almost all chapters refer to the large number of published papers that can be consulted for future study.
This book provides for the first time a good understanding of the etching profile technologies that do not disturb the plasma. Three types of sensors are introduced: on-wafer UV sensors, on-wafer charge-up sensors and on-wafer sheath-shape sensors in the plasma processing and prediction system of real etching profiles based on monitoring data. Readers are made familiar with these sensors, which can measure real plasma process surface conditions such as defect generations due to UV-irradiation, ion flight direction due to charge-up voltage in high-aspect ratio structures and ion sheath conditions at the plasma/surface interface. The plasma etching profile realistically predicted by a computer simulation based on output data from these sensors is described.
stacked QD structure and is useful for examining the possibility of all optical measurement of stacked QD layers. Optical absorption spectra of self-assembled QDs has been little reported, and further investigation in necessary to study hole-burning memory. 2.5 Summary This chapter describes recent advances in quantum dot fabrication tech nologies, focusing on our self-formed quantum dot technologies including TSR quantum dots and SK-mode self-assembled quantum dots. As is described in this chapter, there are many possible device applications such as quantum dot tunneling memory devices, quantum dot fioating-dot gate FETs, quantum dot lasers, and quantum dot hole-burning memory devices. The quantum dot laser applications seem to be the most practicable among these applications. However, many problems remain to be solved before even this application becomes practical. The most important issue is to of self-assembled quantum dots more pre control the size and position cisely, with an accuracy on an atomic scale. The confinement must be enough to keep the separation energy between quantized energy levels high enough to get high-temperature characteristics. The lasing oscillation frequency should be fixed at 1.3 f.lITl or 1.5 f.lITl for optical communication. Phonon bottleneck problems should be solved by the optimization of device structures. Fortunately, there is much activity in the area of quantum dot lasers and, therefore, many breakthroughs will be made, along with the exploration of other new application areas.
On June 19th 1999, the European Ministers of Education signed the Bologna Dec laration, with which they agreed that the European university education should be uniformized throughout Europe and based on the two cycle bachelor master's sys tem. The Institute for Theoretical Physics at Utrecht University quickly responded to this new challenge and created an international master's programme in Theoret ical Physics which started running in the summer of 2000. At present, the master's programme is a so called prestige master at Utrecht University, and it aims at train ing motivated students to become sophisticated researchers in theoretical physics. The programme is built on the philosophy that modern theoretical physics is guided by universal principles that can be applied to any sub?eld of physics. As a result, the basis of the master's programme consists of the obligatory courses Statistical Field Theory and Quantum Field Theory. These focus in particular on the general concepts of quantum ?eld theory, rather than on the wide variety of possible applica tions. These applications are left to optional courses that build upon the ?rm concep tual basis given in the obligatory courses. The subjects of these optional courses in clude, for instance, Strongly Correlated Electrons, Spintronics, Bose Einstein Con densation, The Standard Model, Cosmology, and String Theory.
This book is dedicated to the analysis of parametric amplification with special emphasis on the MOS discrete-time implementation. This implementation is demonstrated by the presentation of several circuits where the MOS parametric amplifier cell is used: small gain amplifier, comparator with embedded pre-amplification, discrete-time mixer/IIR-Filter, and analog-to-digital converter (ADC). Experimental results are shown to validate the overall design technique.
What are the relations between the shape of a system of cities and that of fish school? Which events should happen in a cell in order that it participates to one of the finger of our hands? How to interpret the shape of a sand dune? This collective book written for the non-specialist addresses these questions and more generally, the fundamental issue of the emergence of forms and patterns in physical and living systems. It is a single book gathering the different aspects of morphogenesis and approaches developed in different disciplines on shape and pattern formation. Relying on the seminal works of D'Arcy Thompson, Alan Turing and Rene Thom, it confronts major examples like plant growth and shape, intra-cellular organization, evolution of living forms or motifs generated by crystals. A book essential to understand universal principles at work in the shapes and patterns surrounding us but also to avoid spurious analogies.
The research of unitary concepts in solid state and molecular chemistry is of current interest for both chemist and physicist communities. It is clear that due to their relative simplicity, low dimensional materials have attracted most of the attention. Thus, many non-trivial problems were solved in chain systems, giving some insight into the behavior of real systems which would otherwise be untractable. The NATO Advanced Research Workshop on "Organic and Inorganic Low-Dimensional Crystalline Materials" was organized to review the most striking electronic properties exhibited by organic and inorganic sytems whose space dimensionality ranges from zero (Od) to one (1d), and to discuss related scientific and technological potentials. The initial objectives of this Workshop were, respectively: i) To research unitary concepts in solid state physics, in particular for one dimensional compounds, ii) To reinforce, through a close coupling between theory and experiment, the interplay between organic and inorganic chemistry, on the one hand, and solid state physics on the other, iii) To get a salient understanding of new low-dimensional materials showing "exotic" physical properties, in conjunction with structural features.
Density functional theory (DFT) has become the standard
workhorse for quantum mechanical simulations as it offers a good
compromise between accuracy and computational cost.
At extremely low temperatures, clouds of bosonic atoms form what is known as a Bose-Einstein condensate. Recently, it has become clear that many different types of condensates -- so called fragmented condensates -- exist. In order to tell whether fragmentation occurs or not, it is necessary to solve the full many-body Schrodinger equation, a task that remained elusive for experimentally relevant conditions for many years. In this thesis the first numerically exact solutions of the time-dependent many-body Schrodinger equation for a bosonic Josephson junction are provided and compared to the approximate Gross-Pitaevskii and Bose-Hubbard theories. It is thereby shown that the dynamics of Bose-Einstein condensates is far more intricate than one would anticipate based on these approximations. A special conceptual innovation in this thesis are optimal lattice models. It is shown how all quantum lattice models of condensed matter physics that are based on Wannier functions, e.g. the Bose/Fermi Hubbard model, can be optimized variationally. This leads to exciting new physics."
The book covers all aspects from the expansion of the Boltzmann transport equation with harmonic functions to application to devices, where transport in the bulk and in inversion layers is considered. The important aspects of stabilization and band structure mapping are discussed in detail. This is done not only for the full band structure of the 3D k-space, but also for the warped band structure of the quasi 2D hole gas. Efficient methods for building the Schrodinger equation for arbitrary surface or strain directions, gridding of the 2D k-space and solving it together with the other two equations are presented."
This book mainly focuses on the study of the high-temperature superconductor Bi2Sr2CaCu2O8 by vacuum, ultra-violet, laser-based, angle-resolved photoemission spectroscopy (ARPES). A new form of electron coupling has been identified in Bi2212, which occurs in the superconducting state. For the first time, the Bogoliubov quasiparticle dispersion with a clear band back-bending has been observed with two peaks in the momentum distribution curve in the superconducting state at a low temperature. Readers will find useful information about the technique of angle-resolved photoemission and the study of high-temperature superconductors using this technique. Dr. Wentao Zhang received his PhD from the Institute of Physics at the Chinese Academy of Sciences. |
![]() ![]() You may like...
The Princess And The Sangoma - Kwasuka…
Dean White, Charles Siboto
Paperback
Conversations With A Gentle Soul
Ahmed Kathrada, Sahm Venter
Paperback
![]()
|