![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Computer hardware & operating systems > Storage media & peripherals
This book takes the reader through the actual manufacturing process
of making a typical chip, from start to finish, including a
detailed discussion of each step, in plain language. The evolution
of today's technology is added to the story, as seen through the
eyes of the engineers who solved some of the problems. The authors
are well suited to that discussion since they are three of those
same engineers. They have a broad exposure to the industry and its
technology that extends all the way back to Shockley Laboratories,
the first semiconductor manufacturer in Silicon Valley.
Now in its fifth edition, bridges the gap between the technical specifications and the real world of designing and programming devices that connect over the Universal Serial Bus (USB). Readers will learn how to select the appropriate USB speed, device class, and hardware for a device; communicate with devices using Visual C# and Visual Basic; use standard host drivers to access devices, including devices that perform vendor-defined tasks; save power with USB's built-in power-conserving protocols; and create robust designs using testing and debugging tools. This fully revised edition also includes instruction on how to increase bus speed with SuperSpeed and SuperSpeedPlus, implement wireless communications, and develop for USB On-The-Go and embedded hosts.
4 zettabytes (4 billion terabytes) of data generated in 2013, 44 zettabytes predicted for 2020 and 185 zettabytes for 2025. These figures are staggering and perfectly illustrate this new era of data deluge. Data has become a major economic and social challenge. The speed of processing of these data is the weakest link in a computer system: the storage system. It is therefore crucial to optimize this operation. During the last decade, storage systems have experienced a major revolution: the advent of flash memory. Flash Memory Integration: Performance and Energy Issues contributes to a better understanding of these revolutions. The authors offer us an insight into the integration of flash memory in computer systems, their behavior in performance and in power consumption compared to traditional storage systems. The book also presents, in their entirety, various methods for measuring the performance and energy consumption of storage systems for embedded as well as desktop/server computer systems. We are invited on a journey to the memories of the future.
Java Card is one of the latest developments in the area of multi-application and platform-independent smart cards. As a working tool for professionals, this easy-to-understand resource provides clear, detailed guidance on smart cards, credit and debit cards, Java Card and Open Card Framework (OCF). It offers in-depth coverage of important standards, open specifications and critical security issues, including common threats and security mechanisms regarding the card and its connection interface. The book explains how to program a Java Card applet, an OCF card service and a terminal application. What's more, the book presents an informative case study on the credit-debit application, offering a detailed road map of the application development process.
The AVR RISC Microcontroller Handbook is a comprehensive guide to
designing with Atmel's new controller family, which is designed to
offer high speed and low power consumption at a lower cost. The
main text is divided into three sections: hardware, which covers
all internal peripherals; software, which covers programming and
the instruction set; and tools, which explains using Atmel's
Assembler and Simulator (available on the Web) as well as IAR's C
compiler.
The Second Edition of The Cache Memory Book introduces systems
designers to the concepts behind cache design. The book teaches the
basic cache concepts and more exotic techniques. It leads readers
through someof the most intricate protocols used in complex
multiprocessor caches. Written in an accessible, informal style,
this text demystifies cache memory design by translating cache
concepts and jargon into practical methodologies and real-life
examples. It also provides adequate detail to serve as a reference
book for ongoing work in cache memory design.
This book is aimed not only at haptics and human interface researchers, but also at developers and designers from manufacturing corporations and the entertainment industry who are working to change our lives. This publication comprises the proceedings of the first International AsiaHaptics conference, held in Tsukuba, Japan, in 2014. The book describes the state of the art of the diverse haptics- (touch-) related research, including scientific research into haptics perception and illusion, development of haptics devices, and applications for a wide variety of fields such as education, medicine, telecommunication, navigation, and entertainment.
Digital Hardware Testing presents realistic transistor-level fault models and testing methods for all types of circuits. The discussion details design-for-testability and built-in self-test methods, with coverage of boundary scan and emerging technologies such as partial scan, cross check, and circular self-test-path.
This text explains how hard disk drives operate, how billions of bytes of digital information are stored and accessed, and where the technology is going. In particular, the book emphasizes the most fundamental principles of magnetic information storage, including in-depth knowledge of both magnetics and signal processing methods. Magnetic Information Storage Technology contains many graphic illustrations and an introduction of alternative storage technologies, such as optic disk recording, holographic recording, semiconductor flash memory, and magnetic random access memory. * Provides the fundamentals of magnetic information storage and
contrasts it with a comparison of alternative storage
technologies
Hardware Based Packet Classification for High Speed Internet Routers presents the most recent developments in hardware based packet classification algorithms and architectures. This book describes five methods which reduce the space that classifiers occupy within TCAMs; TCAM Razor, All-Match Redundancy Removal, Bit Weaving, Sequential Decomposition, and Topological Transformations. These methods demonstrate that in most cases a substantial reduction of space is achieved. Case studies and examples are provided throughout this book. About this book: * Presents the only book in the market that exclusively covers hardware based packet classification algorithms and architectures. * Describes five methods which reduce the space that classifiers occupy within TCAMs: TCAM Razor, All-Match Redundancy Removal, Bit Weaving, Sequential Decomposition, and Topological Transformations. * Provides case studies and examples throughout. Hardware Based Packet Classification for High Speed Internet Routers is designed for professionals and researchers who work within the related field of router design. Advanced-level students concentrating on computer science and electrical engineering will also find this book valuable as a text or reference book.
Today s semiconductor memory market is divided between two types of memory: DRAM and Flash. Each has its own advantages and disadvantages. While DRAM is fast but volatile, Flash is non-volatile but slow. A memory system based on self-organized quantum dots (QDs) as storage node could combine the advantages of modern DRAM and Flash, thus merging the latter s non-volatility with very fast write times. This thesis investigates the electronic properties of and carrier dynamics in self-organized quantum dots by means of time-resolved capacitance spectroscopy and time-resolved current measurements. The first aim is to study the localization energy of various QD systems in order to assess the potential of increasing the storage time in QDs to non-volatility. Surprisingly, it is found that the major impact of carrier capture cross-sections of QDs is to influence, and at times counterbalance, carrier storage in addition to the localization energy. The second aim is to study the coupling between a layer of self-organized QDs and a two-dimensional hole gas (2DHG), which is relevant for the read-out process in memory systems. The investigation yields the discovery of the many-particle ground states in the QD ensemble.In addition to its technological relevance, the thesis also offers new insights into the fascinating field of nanostructure physics."
With the semiconductor market growth, new Integrated Circuit designs are pushing the limit of the technology and in some cases, require speci?c ?ne-tuning of certain process modules in manufacturing. Thus the communities of design and technology are increasingly intertwined. The issues that require close interactions and colla- ration for trade-off and optimization across the design/device/process ?elds are addressed in this book. It contains a set of outstanding papers, keynote and tutorials presented during 3 days at the International Conference on Integrated Circuit Design and Technology (ICICDT) held in June 2008 in Minatec, Grenoble. The selected papers are spread over ?ve chapters covering various aspects of emerging technologies and devices, advanced circuit design, reliability, variability issues and solutions, advanced memories and analog and mixed signals. All these papers are focusing on design and technology interactions and comply with the scope of the conference. v . Contents Part I Introduction 1 Synergy Between Design and Technology: A Key Factor in the Evolving Microelectronic Landscape. . . . . . . . . . . . . . . . . . . . . . 3 Michel Brilloue]t Part II Emerging Technologies and Circuits 2 New State Variable Opportunities Beyond CMOS: A System Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Victor V. Zhirnov, Ralph K. Cavin, and George I. Bourianoff 3 A Simple Compact Model to Analyze the Impact of Ballistic and Quasi-Ballistic Transport on Ring Oscillator Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 S. Martinie, D. Munteanu, G. Le Carval, and J. L. Autran Part III Advanced Devices and Circuits 4 Low-Voltage Scaled 6T FinFET SRAM Cells . . . . . . . . . . . . . . . . . . . 55 N. Collaert, K. von Arnim, R. Rooyackers, T."
CD and DVD Forensics will take the reader through all facets of
handling, examining, and processing CD and DVD evidence for
computer forensics. At a time where data forensics is becoming a
major part of law enforcement and prosecution in the public sector,
and corporate and system security in the private sector, the
interest in this subject has just begun to blossom.
Offering thorough coverage of atomic layer deposition (ALD), this book moves from basic chemistry of ALD and modeling of processes to examine ALD in memory, logic devices and machines. Reviews history, operating principles and ALD processes for each device.
This excellent reference proposes and develops new strategies, methodologies and tools for designing low-power and low-area CMOS pipelined A/D converters. The task is tackled by following a scientifically-consistent approach. The book may also be used as a text for advanced reading on the subject.
Ferroelectric memories have changed in 10 short years from academic curiosities of the university research labs to commercial devices in large-scale production. This is the first text on ferroelectric memories that is not just an edited collection of papers by different authors. Intended for applied physicists, electrical engineers, materials scientists and ceramists, it includes ferroelectric fundamentals, especially for thin films, circuit diagrams and processsing chapters, but emphazises device physics. Breakdown mechanisms, switching kinetics and leakage current mechanisms have lengthly chapters devoted to them. The book will be welcomed by research scientists in industry and government laboratories and in universities. It also contains 76 problems for students, making it particularly useful as a textbook for fourth-year undergraduate or first-year graduate students.
This book brings together concepts and approaches from the fields of photogrammetry and computer vision. In particular, it examines techniques relating to quantitative image analysis, such as orientation, camera modelling, system calibration, self-calibration and error handling. The chapters have been contributed by experts in the relevant fields, and there are examples from automated inspection systems and other real-world cases. The book provides study material for students, researchers, developers and practitioners.
A Flash memory is a Non Volatile Memory (NVM) whose "unit cells" are fabricated in CMOS technology and programmed and erased electrically. In 1971, Frohman-Bentchkowsky developed a folating polysilicon gate tran sistor [1, 2], in which hot electrons were injected in the floating gate and removed by either Ultra-Violet (UV) internal photoemission or by Fowler Nordheim tunneling. This is the "unit cell" of EPROM (Electrically Pro grammable Read Only Memory), which, consisting of a single transistor, can be very densely integrated. EPROM memories are electrically programmed and erased by UV exposure for 20-30 mins. In the late 1970s, there have been many efforts to develop an electrically erasable EPROM, which resulted in EEPROMs (Electrically Erasable Programmable ROMs). EEPROMs use hot electron tunneling for program and Fowler-Nordheim tunneling for erase. The EEPROM cell consists of two transistors and a tunnel oxide, thus it is two or three times the size of an EPROM. Successively, the combination of hot carrier programming and tunnel erase was rediscovered to achieve a single transistor EEPROM, called Flash EEPROM. The first cell based on this concept has been presented in 1979 [3]; the first commercial product, a 256K memory chip, has been presented by Toshiba in 1984 [4]. The market did not take off until this technology was proven to be reliable and manufacturable [5].
Magnetic recording is expected to become core technology in a multi-billion dollar industry in the in the very near future. Some of the most critical discoveries regarding perpendicular write and playback heads and perpendicular media were made only during the last several years as a result of extensive and intensive research in both academia and industry in their fierce race to extend the superparamagnetic limit in the magnetic recording media. These discoveries appear to be critical for implementing perpendicular magnetic recording into an actual disk drive. This book addresses all the open questions and issues which need to be resolved before perpendicular recording can finally be implemented successfully, and is the first monograph in many years to address this subject. This book is intended for graduate students, young engineers and even senior and more experienced researchers in this field who need to acquire adequate knowledge of the physics of perpendicular magnetic recording in order to further develop the field of perpendicular recording.
BiCMOS Technology and Applications, Second Edition provides a synthesis of available knowledge about the combination of bipolar and MOS transistors in a common integrated circuit - BiCMOS. In this new edition all chapters have been updated and completely new chapters on emerging topics have been added. In addition, BiCMOS Technology and Applications, Second Edition provides the reader with a knowledge of either CMOS or Bipolar technology/design a reference with which they can make educated decisions regarding the viability of BiCMOS in their own application. BiCMOS Technology and Applications, Second Edition is vital reading for practicing integrated circuit engineers as well as technical managers trying to evaluate business issues related to BiCMOS. As a textbook, this book is also appropriate at the graduate level for a special topics course in BiCMOS. A general knowledge in device physics, processing and circuit design is assumed. Given the division of the book, it lends itself well to a two-part course; one on technology and one on design. This will provide advanced students with a good understanding of tradeoffs between bipolar and MOS devices and circuits.
This book is a collection of the finalized versions of the papers presented at the third Eurographics Workshop on Graphics Hardware. The diversity of the contributions reflects the widening range of options for graphics hardware that can be exploited due to the constant evolution of VLSI and software technologies. The first part of the book deals with the algorithmic aspects of graphics systems in a hardware-oriented context. Topics are: VLSI design strategies, data distribution for ray-tracing, the advantages of point-driven image generation with respect to VLSI implementation, use of memory and ease of parallelization, ray-tracing, and image reconstruction. The second part is on specific hardware, on content addressable memories and voxel-based systems. The third part addresses parallel systems: massively parallel object-based architectures, two systems in which image generated by individual rendering systems are composited, a transputer-based parallel display processor.
This state-of-the-art monograph presents a coherent survey of a variety of methods and systems for formal hardware verification. It emphasizes the presentation of approaches that have matured into tools and systems usable for the actual verification of nontrivial circuits. All in all, the book is a representative and well-structured survey on the success and future potential of formal methods in proving the correctness of circuits. The various chapters describe the respective approaches supplying theoretical foundations as well as taking into account the application viewpoint. By applying all methods and systems presented to the same set of IFIP WG10.5 hardware verification examples, a valuable and fair analysis of the strenghts and weaknesses of the various approaches is given.
The Compact Disc (CD), as a standardized information carrier, has become one of the most successful consumer products ever marketed. Although the original disc was intended for audio playback, its specific advantages opened very quickly the way towards various computer applications. The standardization of the Compact Disc Read-Only Memory (CD-ROM) and of all succeeding similar products, like Compact Disc interactive (CD-i), Photo and Video CD, CD Recordable (CD-R), and CD Rewritable (CD R/W), has substantially enlarged the range of possible applications. The plastic disc represented from the very beginning a removable medium of large storage capacity. The advent of the personal computer accompa nied by the increasing demand for both data distribution and exchange have strongly marked the evolution of the CD-ROM drive. The number of sold CD-ROM units exceeded 60 millions in 1997 when compared to about 2.5 millions in 1992. As computing power continuously improved over the years, computer pe ripherals have also targeted better performance specifications. In particular, the speed of CD-ROM drives increased from the so-called 1X in 1984 to dou ble speed in 1992, and further to 32X at the beginning of 1998. The average time needed to access data on disc has dropped from about 300 ms to less than 90 ms within the same period of time." |
![]() ![]() You may like...
In Search of the Next Memory - Inside…
Roberto Gastaldi, Giovanni Campardo
Hardcover
R4,164
Discovery Miles 41 640
Technology for Success - Computer…
Mark Ciampa, Jill West, …
Paperback
![]()
Cache and Memory Hierarchy Design - A…
Steven A. Przybylski
Hardcover
Smart Card Research and Advanced…
Josep Domingo-Ferrer, David Chan, …
Hardcover
R5,941
Discovery Miles 59 410
Wireless CMOS Frequency Synthesizer…
J. Craninckx, Michiel Steyaert
Hardcover
R4,528
Discovery Miles 45 280
|