![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Energy technology & engineering > Electrical engineering
The road vehicle of the future will embrace innovations from three major automotive technology fields: driver assistance systems, vehicle networking and alternative propulsion. Smart systems such as adaptive ICT components and MEMS devices, novel network architectures, integrated sensor systems, intelligent interfaces and functional materials form the basis of these features and permit their successful and synergetic integration. They increasingly appear to be the key enabling technologies for safe and green road mobility. For more than fifteen years the International Forum on Advanced Microsystems for Automotive Applications (AMAA) has been successful in detecting novel trends and in discussing the technological implications from early on. The topic of the AMAA 2013 will be Smart Systems for Safe and Green Vehicles . This book contains peer-reviewed papers written by leading engineers and researchers which all address the ongoing research and novel developments in the field. www.amaa.de
Equipment to be installed in electric power-transmission and distribution systems must pass acceptance tests with standardized high-voltage or high-current test impulses which simulate the stress on the insulation caused by external lightning discharges and switching operations in the grid. High impulse voltages and currents are also used in many other fields of science and engineering for various applications. Therefore, precise impulse-measurement techniques are necessary, either to prevent an over- or understressing of the insulation or to guarantee the effectiveness and quality of the application. The target audience primarily comprises engineers and technicians but the book may also be beneficial for graduate students of high-voltage engineering and electrical power supply systems.
This contributed volume contains the selected and thoroughly reviewed research papers presented at the conference on logistics management LM2015 in Braunschweig, Germany. The conference of the special interest group in logistics of the German Academic Association for Business Research (VHB) was held in conjunction with the special interest group on production of the VHB. Thus, the papers reflect the current state-of-the-art in logistics and supply chain management while focusing especially on aspects of production logistics, i.e., facility layout, inventory management, line configuration, or flexible production.
This book is a part of the Proceedings of the Seventh International Symposium on Neural Networks (ISNN 2010), held on June 6-9, 2010 in Shanghai, China. Over the past few years, ISNN has matured into a well-established premier international symposium on neural networks and related fields, with a successful sequence of ISNN series in Dalian (2004), Chongqing (2005), Chengdu (2006), Nanjing (2007), Beijing (2008), and Wuhan (2009). Following the tradition of ISNN series, ISNN 2010 provided a high-level international forum for scientists, engineers, and educators to present the state-of-the-art research in neural networks and related fields, and also discuss the major opportunities and challenges of future neural network research. Over the past decades, the neural network community has witnessed significant breakthroughs and developments from all aspects of neural network research, including theoretical foundations, architectures, and network organizations, modeling and simulation, empirical studies, as well as a wide range of applications across different domains. The recent developments of science and technology, including neuroscience, computer science, cognitive science, nano-technologies and engineering design, among others, has provided significant new understandings and technological solutions to move the neural network research toward the development of complex, large scale, and networked brain-like intelligent systems. This long-term goals can only be achieved with the continuous efforts from the community to seriously investigate various issues on neural networks and related topics.
Wide area monitoring, protection and control systems (WAMPACs) have been recognized as the most promising enabling technologies to meet challenges of modern electric power transmission systems, where reliability, economics, environmental and other social objectives must be balanced to optimize the grid assets and satisfy growing electrical demand. To this aim WAMPAC requires precise phasor and frequency information, which are acquired by deploying multiple time synchronized sensors, known as Phasor Measurement Units (PMUs), providing precise synchronized information about voltage and current phasors, frequency and rate-of-change-of-frequency. This book provides an overview of this emerging technology. Topics covered include an introduction to WAMPACs; reliability-based substation monitoring systems placement; system integrity protection scheme based on PMU technology; new methodologies for large scale power system dynamic analysis; a fuzzy-based knowledge discovery paradigm for on-line optimal power flow analysis; and false data injection attacks and countermeasures for wide area measurement system.
This book provides a comprehensive introduction to the thermal issues in photovoltaics. It also offers an extensive overview of the physics involved and insights into possible thermal optimizations of the different photovoltaic device technologies.In general, temperature negatively affects the efficiency of photovoltaic devices. The first chapter describes the temperature-induced losses in photovoltaic devices and reviews the strategies to overcome them. The second chapter introduces the concept of temperature coefficient, the underlying physics and some guidelines for reducing their negative impacts. Subsequent chapters offer a comprehensive and general thermal model of photovoltaic devices, and review how current and emerging technologies, mainly solar cells but also thermophotovoltaic devices, can benefit from thermal optimizations.Throughout the book, the authors argue that the energy yield of photovoltaic devices can be optimized by taking their thermal behavior and operating conditions into consideration in their design.
Case Studies in Control presents a framework to facilitate the use of advanced control concepts in real systems based on two decades of research and over 150 successful applications for industrial end-users from various backgrounds. In successive parts the text approaches the problem of putting the theory to work from both ends, theoretical and practical. The first part begins with a stress on solid control theory and the shaping of that theory to solve particular instances of practical problems. It emphasizes the need to establish by experiment whether a model-derived solution will perform properly in reality. The second part focuses on real industrial applications based on the needs and requirements of end-users. Here, the engineering approach is dominant but with theoretical input of varying degree depending on the particular process involved. Following the illustrations of the progress that can be made from either extreme of the well-known theory-practice divide, the text proceeds to a third part related to the development of tools that enable simpler use of advanced methods, a need only partially met by available commercial products. Each case study represents a self-contained unit that shows an experimental application of a particular method, a practical solution to an industrial problem or a toolkit that makes control design and implementation easier or more efficient. Among the applications presented are: wastewater treatment; manufacturing of electrical motors ; temperature control of blow moulding; burn-protective garments quality assessment; and rapid prototyping. Written by contributors with a considerable record of industrially-applied research, Case Studies in Control will encourage interaction between industrial practitioners and academic researchers and be of benefit to both, helping to make theory realistic and practical implementation more thorough and efficacious. Advances in Industrial Control aims to report and encourage the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.
Modeling of photovoltaic sources and their emulation by means of power electronic converters are challenging issues. The former is tied to the knowledge of the electrical behavior of the PV generator; the latter consists in its realization by a suitable power amplifier. This extensive introduction to the modeling of PV generators and their emulation by means of power electronic converters will aid in understanding and improving design and set up of new PV plants. The main benefit of reading Photovoltaic Sources is the ability to face the emulation of photovoltaic generators obtained by the design of a suitable equipment in which voltage and current are the same as in a real source. This is achieved according to the following steps: the source electrical behavior modeling, the power converter design, including its control, for the laboratory emulator. This approach allows the reader to cope with the creation of an indoor virtual photovoltaic plant, in which the environmental conditions can be imposed by the user, for testing real operation including maximum power point tracking, partial shading, control for the grid or load interfacing, etc. Photovoltaic Sources is intended to meet the demands of postgraduate level students, and should prove useful to professional engineers and researchers dealing with the problems associated with modeling and emulation of photovoltaic sources.
An apparently appropriate control scheme for PEM fuel cells may actually lead to an inoperable plant when it is connected to other unit operations in a process with recycle streams and energy integration. PEM Fuel Cells with Bio-Ethanol Processor Systems presents a control system design that provides basic regulation of the hydrogen production process with PEM fuel cells. It then goes on to construct a fault diagnosis system to improve plant safety above this control structure. PEM Fuel Cells with Bio-Ethanol Processor Systems is divided into two parts: the first covers fuel cells and the second discusses plants for hydrogen production from bio-ethanol to feed PEM fuel cells. Both parts give detailed analyses of modeling, simulation, advanced control, and fault diagnosis. They give an extensive, in-depth discussion of the problems that can occur in fuel cell systems and propose a way to control these systems through advanced control algorithms. A significant part of the book is also given over to computer-aided engineering software tools that can be used to evaluate the dynamic performance of the overall plant. PEM Fuel Cells with Bio-Ethanol Processor Systems is intended for use by researchers and advanced students on chemical, electrical-electronic and mechanical engineering courses in which dynamics and control are incorporated with the traditional steady-state coverage of flowsheet synthesis, engineering economics and optimization.
Most of the research and experiments in the fields of modeling and control systems have spent significant efforts to find rules from various complicated phenomena by principles, observations, measured data, logic derivations. The rules are normally summarized as concise and quantitative expressions or "models". "Identification" provides mechanisms to establish the models and "control" provides mechanisms to improve system performances.This book reflects the relevant studies and applications in the area of renewable energies, with the latest research from interdisciplinary theoretical studies, computational algorithm development to exemplary applications. It discusses how modeling and control methods such as recurrent neural network, Pitch Angle Control, Fuzzy control, Sliding Mode Control and others are used in renewable systems. It covers topics as photovoltaic systems, wind turbines, maximum power point tracking, batteries for renewable energies, solar energy, thermal energy and so on. This book is edited and written by leading experts in the field and offers an ideal reference guide for researchers and engineers in the fields of electrical/electronic engineering, control system and energy.
Guidance Note 8: Earthing & Bonding includes information from BS 7430 Code of Practice for Earthing. It covers key guidance for all involved with specifying, designing, installing or verifying electrical installations and has been fully updated to BS 7671:2018+A2:2022. BS 7671:2018+A2:2022 incorporates changes from the first amendment, published in 2020, regarding Electric Vehicle Charging Installations to provide greater guidance on embracing changing technology within this sector. Additional changes within the second amendment include protection against thermal effects and fire caused by electrical equipment, protection against voltage disturbances and electromagnetic disturbances, and a new chapter on prosumer's low-voltage electrical installations covering energy efficiency measures, the interface with the smart grid, the management of electricity consumption, the management of renewable sources of electricity, and energy storage.
This book presents a novel, generalized approach to the design of nonlinear state feedback control laws for a large class of underactuated mechanical systems based on application of the block backstepping method. The control law proposed here is robust against the effects of model uncertainty in dynamic and steady-state performance and addresses the issue of asymptotic stabilization for the class of underactuated mechanical systems. An underactuated system is defined as one for which the dimension of space spanned by the configuration vector is greater than that of the space spanned by the control variables. Control problems concerning underactuated systems currently represent an active field of research due to their broad range of applications in robotics, aerospace, and marine contexts. The book derives a generalized theory of block backstepping control design for underactuated mechanical systems, and examines several case studies that cover interesting examples of underactuated mechanical systems. The mathematical derivations are described using well-known notations and simple algebra, without the need for any special previous background in higher mathematics. The chapters are lucidly described in a systematic manner, starting with control system preliminaries and moving on to a generalized description of the block backstepping method, before turning to several case studies. Simulation and experimental results are also provided to aid in reader comprehension.
This book provides instruction on how to use the OrCAD design suite
to design and manufacture printed circuit boards. The primary goal
is to show the reader how to design a PCB using OrCAD Capture and
OrCAD Editor. Capture is used to build the schematic diagram of the
circuit, and Editor is used to design the circuit board so that it
can be manufactured.
This book focuses on the electromagnetic and thermal modeling and analysis of electrical machines, especially canned electrical machines for hydraulic pump applications. It addresses both the principles and engineering practice, with more weight placed on mathematical modeling and theoretical analysis. This is achieved by providing in-depth studies on a number of major topics such as: can shield effect analysis, machine geometry optimization, control analysis, thermal and electromagnetic network models, magneto motive force modeling, and spatial magnetic field modeling. For the can shield effect analysis, several cases are studied in detail, including classical canned induction machines, as well as state-of-the-art canned permanent magnet machines and switched reluctance machines. The comprehensive and systematic treatment of the can effect for canned electrical machines is one of the major features of this book, which is particularly suited for readers who are interested in learning about electrical machines, especially for hydraulic pumping, deep-sea exploration, mining and the nuclear power industry. The book offers a valuable resource for researchers, engineers, and graduate students in the fields of electrical machines, magnetic and thermal engineering, etc.
This book, discusses the latest research on the intelligent control of two important components in smart grids, namely microgrids (MGs) and electric vehicles (EVs). It focuses on developing theoretical frameworks and proposing corresponding algorithms, to optimally schedule virtualized elements under different uncertainties so that the total cost of operating the microgrid or the EV charging system can be minimized and the systems maintain stabilized. With random factors in the problem formulation and corresponding designed algorithms, it provides insights into how to handle uncertainties and develop rational strategies in the operation of smart grid systems. Written by leading experts, it is a valuable resource for researchers, scientists and engineers in the field of intelligent management of future power grids.
This book provides comprehensive coverage of Lithium (Li) metal anodes for rechargeable batteries. Li is an ideal anode material for rechargeable batteries due to its extremely high theoretical specific capacity (3860 mAh g-1), low density (0.59 g cm-3), and the lowest negative electrochemical potential ( 3.040 V vs. standard hydrogenelectrodes). Unfortunately, uncontrollable dendritic Li growth and limited Coulombic efficiency during Li deposition/stripping inherent in these batteries have prevented their practical applications over the past 40 years. With the emergence of post Liion batteries, safe and efficient operation of Li metal anodes has become an enabling technology which may determine the fate of several promising candidates for the next generation energy storage systems, including rechargeable Li-air batteries, Li-S batteries, and Li metal batteries which utilize intercalation compounds as cathodes. In this work, various factors that affect the morphology and Coulombic efficiency of Li anodes are analyzed. The authors also present the technologies utilized to characterize the morphology of Li deposition and the results obtained by modeling of Li dendrite growth. Finally, recent developments, especially the new approaches that enable safe and efficient operation of Li metal anodes at high current densities are reviewed. The urgent need and perspectives in this field are also discussed. The fundamental understanding and approaches presented in this work will be critical for the applicationof Li metal anodes. The general principles and approaches can also be used in other metal electrodes and general electrochemical deposition of metal films.
Wafer-scale integration has long been the dream of system designers. Instead of chopping a wafer into a few hundred or a few thousand chips, one would just connect the circuits on the entire wafer. What an enormous capability wafer-scale integration would offer: all those millions of circuits connected by high-speed on-chip wires. Unfortunately, the best known optical systems can provide suitably ?ne resolution only over an area much smaller than a whole wafer. There is no known way to pattern a whole wafer with transistors and wires small enough for modern circuits. Statistical defects present a ?rmer barrier to wafer-scale integration. Flaws appear regularly in integrated circuits; the larger the circuit area, the more probable there is a ?aw. If such ?aws were the result only of dust one might reduce their numbers, but ?aws are also the inevitable result of small scale. Each feature on a modern integrated circuit is carved out by only a small number of photons in the lithographic process. Each transistor gets its electrical properties from only a small number of impurity atoms in its tiny area. Inevitably, the quantized nature of light and the atomic nature of matter produce statistical variations in both the number of photons de?ning each tiny shape and the number of atoms providing the electrical behavior of tiny transistors. No known way exists to eliminate such statistical variation, nor may any be possible.
1. 1 Motivation and Scope of Research Container terminals in seaports constitute interfaces between sea and land tra- port of goods in global transport chains. These logistics facilities face an increasing demandof service capacity, as is re ected by a tremendousgrowthin the worldwide container transshipments per year. For example, the top 20 terminals in the world showed an average relative increase of 14% with respect to the number of handled container units from 2006 to 2007, see Port of Hamburg Marketing (2008). In spite of this development, competition is high among container terminals within the same region. A terminal's customers, rst and foremost the vessel op- ators, expect a high level of service quality where reliability is one of the most importantdimensions, seeWiegmansetal. (2001). Regardingtheserviceofavessel, reliability means to realize all transshipment operations within its projected service time interval. The reliability of terminal operations impacts the reliability of v- sels in meeting their liner schedules. According to Notteboom (2006) unexpected waiting times of vessels before berthing and unexpected low transshipment prod- tivity at terminals are responsible for about 86% of liner schedule disturbances, see Fig. 1. 1. Currently, many terminal operators counteract this situation by extending their transshipment capacities. They build new terminals or enlarge existing ter- nals and purchase new or upgrade existing equipment. Ilmer (2005) provides an overview of current projects for building terminal capacity in northern Europe.
For many, smart grids are the biggest technological revolution since the Internet. They have the potential to reduce carbon dioxide emissions, increase the reliability of electricity supply, and increase the efficiency of our energy infrastructure. "Smart Grid Applications, Communications, and Security "explains how diverse technologies play hand-in-hand in building and maintaining smart grids around the globe. The book delves into the communication aspects of smart grids, provides incredible insight into power electronics, sensing, monitoring, and control technologies, and points out the potential for new technologies and markets. Extensively cross-referenced, the book contains comprehensive coverage in four major parts: "Part I: "Applications provides a detailed introduction to smart grid applications--spanning the transmission, distribution, and consumer side of the electricity grid"Part II: "Communications discusses wireless, wireline, and optical communication solutions--from the physical layers up to sensing, automation, and control protocols running on the application layers"Part III: "Security deals with cyber security--sharpening the awareness of security threats, reviewing the ongoing standardization, and outlining the future of authentication and encryption key management"Part IV: "Case Studies and Field Trials presents self-contained chapters of studies where the smart grid of tomorrow has already been put into practice With contributions from major industry stakeholders such as Siemens, Cisco, ABB, and Motorola, this is the ideal book for both engineering professionals and students.
This book documents the advantages and limitations of various electricity generation methods. It illustrates how both electricity and motor fuel can be cost-effectively derived from coal, natural gas or other indigenous fuels, thereby eliminating our dependence on imported oil and the power of OPEC. It favours electricity generation systems powered exclusively by natural gas, coal, nuclear and renewables and motor vehicles powered by hydrogen (electricity from coal gasification with carbon capture and sequestration (CCS) and hydrogen as the fuel powering fuel-cell electric vehicles produced from natural gas or by gasifying coal With CCS.) The book also demonstrates that the US can meet the Climate Change goal of reducing all greenhouse gases by 80% below 1990 levels in both the transportation and electric utility sectors using hydrogen and coal. |
You may like...
Microbiorobotics - Biologically Inspired…
Minjun Kim, Agung Julius, …
Hardcover
R3,214
Discovery Miles 32 140
Macro-Engineering and the Earth - World…
U W Kitzinger, E. G Frankel
Hardcover
R1,914
Discovery Miles 19 140
Understanding Elephants - Guidelines for…
Elephant Specialist Advisory Group
Paperback
The Elephants Of Thula Thula - Finding…
Francoise Malby-Anthony
Paperback
(2)
Sustainable Human Development Across the…
Shameem Oomur, Susan E Luczak, …
Hardcover
R2,836
Discovery Miles 28 360
Sustainability in Energy and Buildings…
Prasad Kaparaju, Robert J. Howlett, …
Hardcover
R5,230
Discovery Miles 52 300
Artificial Intelligence for Future…
Rabindra Nath Shaw, Ankush Ghosh, …
Paperback
R3,864
Discovery Miles 38 640
|