![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Energy technology & engineering > Electrical engineering
This book presents a systems approach to bioenergy and provides a means to capture the complexity of bioenergy issues, including both direct and indirect impacts across the energy economy. The book addresses critical topics such as systems thinking; sustainability, biomass; feedstocks of importance and relevance (that are not competing with the food market); anaerobic digestion and biogas; biopower and bioheat; and policies, economy, and rights to access to clean energy. This is a contributed volume with each chapter written by relevant experts in the respective fields of research and teaching. Each chapter includes a review with highlights of the key points, critical-thinking questions, and a glossary.This book can be used as a primary or secondary textbook in courses related to bioenergy and bioproducts and sustainable biofuels. It is suitable for advanced undergraduate and graduate students. Researchers, professionals, and policy makers will also be able to use this book for current reference materials.
Distributed Generation Systems: Design, Operation and Grid Integration closes the information gap between recent research on distributed generation and industrial plants, and provides solutions to their practical problems and limitations. It provides a clear picture of operation principles of distributed generation units, not only focusing on the power system perspective but targeting a specific need of the research community. This book is a useful reference for practitioners, featuring worked examples and figures on principal types of distributed generation with an emphasis on real-world examples, simulations, and illustrations. The book uses practical exercises relating to the concepts of operating and integrating DG units to distribution networks, and helps engineers accurately design systems and reduce maintenance costs.
This book is the first of its kind to comprehensively describe the principles of demand response. This allows consumers to play a significant role in the operation of the electric grid by reducing or shifting their electricity usage in response to the grid reliability need, time-based rates or other forms of financial incentives. The main contents of the book include modeling of demand response resources, incentive design, scheduling and dispatch algorithms, and impacts on grid operation and planning. Through case studies and illustrative examples, the authors highlight and compare the advantages, disadvantages and benefits that demand response can have on grid operations and electricity market efficiency. First book of its kind to introduce the principles of demand response; Combines theory with real-world applications useful for both professionals and academic researchers; Covers demand response in the context of power system applications.
This book focuses on impedance source inverters, discussing their classification, advantages, topologies, analysis methods, working mechanisms, improvements, reliability, and applications. It summarizes methods for suppressing DC-link voltage spikes and duty loss, which can pose a problem for researchers; and presents novel, efficient, steady state and transient analysis methods that are of significant practical value, along with specific calculation examples. Further, the book addresses the reliability of impedance source inverters, adopting a methodology from reliability engineering to do so. Given its scope, it offers a valuable resource for researchers, engineers, and graduate students in fields involving impedance source inverters and new energy sources.
The conference has an interdisciplinary focus and aims to bring together scientists - mathematicians, electrical engineers, computer scientists, and physicists, from universities and industry - to have in-depth discussions of the latest scientific results in Computational Science and Engineering relevant to Electrical Engineering and to stimulate and inspire active participation of young researchers.
This book collects a selection of papers presented at ELECTRIMACS 2019, the 13th international conference of the IMACS TC1 Committee, held in Salerno, Italy, on 21st-23rd May 2019. The conference papers deal with modelling, simulation, analysis, control, power management, design optimization, identification and diagnostics in electrical power engineering. The main application fields include electric machines and electromagnetic devices, power electronics, transportation systems, smart grids, electric and hybrid vehicles, renewable energy systems, energy storage, batteries, supercapacitors and fuel cells, and wireless power transfer. The contributions included in Volume 1 are particularly focused on electrical engineering simulation aspects and innovative applications.
This book provides a comprehensive overview on the latest developments in the control, operation, and protection of microgrids. It provides readers with a solid approach to analyzing and understanding the salient features of modern control and operation management techniques applied to these systems, and presents practical methods with examples and case studies from actual and modeled microgrids. The book also discusses emerging concepts, key drivers and new players in microgrids, and local energy markets while addressing various aspects from day-ahead scheduling to real-time testing of microgrids. The book will be a valuable resource for researchers who are focused on control concepts, AC, DC, and AC/DC microgrids, as well as those working in the related areas of energy engineering, operations research and its applications to energy systems. Presents modern operation, control and protection techniques with applications to real world and emulated microgrids; Discusses emerging concepts, key drivers and new players in microgrids and local energy markets; Addresses various aspects from day-ahead scheduling to real-time testing of microgrids.
This book provides readers with an in-depth discussion of circuit simulation, combining basic electrical engineering circuit theory with Python programming. It fills an information gap by describing the development of Python Power Electronics, an open-source software for simulating circuits, and demonstrating its use in a sample circuit. Unlike typical books on circuit theory that describe how circuits can be solved mathematically, followed by examples of simulating circuits using specific, commercial software, this book has a different approach and focus. The author begins by describing every aspect of the open-source software, in the context of non-linear power electronic circuits, as a foundation for aspiring or practicing engineers to embark on further development of open source software for different purposes. By demonstrating explicitly the operation of the software through algorithms, this book brings together the fields of electrical engineering and software technology.
This book provides an overview of emerging topics in the field of hardware security, such as artificial intelligence and quantum computing, and highlights how these technologies can be leveraged to secure hardware and assure electronics supply chains. The authors are experts in emerging technologies, traditional hardware design, and hardware security and trust. Readers will gain a comprehensive understanding of hardware security problems and how to overcome them through an efficient combination of conventional approaches and emerging technologies, enabling them to design secure, reliable, and trustworthy hardware.
The volumes includes selected and reviewed papers from the 1st ETA Conference on Energy and Thermal Management, Air Conditioning and Waste Heat Recovery in Berlin, December 1-2, 2016. Experts from university, public authorities and industry discuss the latest technological developments and applications for energy efficiency. Main focus is on automotive industry, rail and aerospace.
This book provides a new perspective on modeling cyber-physical systems (CPS), using a data-driven approach. The authors cover the use of state-of-the-art machine learning and artificial intelligence algorithms for modeling various aspect of the CPS. This book provides insight on how a data-driven modeling approach can be utilized to take advantage of the relation between the cyber and the physical domain of the CPS to aid the first-principle approach in capturing the stochastic phenomena affecting the CPS. The authors provide practical use cases of the data-driven modeling approach for securing the CPS, presenting novel attack models, building and maintaining the digital twin of the physical system. The book also presents novel, data-driven algorithms to handle non- Euclidean data. In summary, this book presents a novel perspective for modeling the CPS.
Energy Management in Wireless Sensor Networks discusses this unavoidable issue in the application of Wireless Sensor Networks (WSN). To guarantee efficiency and durability in a network, the science must go beyond hardware solutions and seek alternative software solutions that allow for better data control from the source to delivery. Data transfer must obey different routing protocols, depending on the application type and network architecture. The correct protocol should allow for fluid information flow, as well as optimizing power consumption and resources - a challenge faced by dense networks. The topics covered in this book provide answers to these needs by introducing and exploring computer-based tools and protocol strategies for low power consumption and the implementation of routing mechanisms which include several levels of intervention, ranging from deployment to network operation.
This book describes the operation and analysis of soft-commutated isolated DC-DC converters used in the design of high efficiency and high power density equipment. It explains the basic principles behind first- and second-order circuits with power switches to enable readers to understand the importance of these converters in high efficiency and high power density power supply design for residential, commercial, industrial and medical use as well as in aerospace equipment. With each chapter featuring a different power converter topology, the book covers the most important resonant converters, including series resonant converters; resonant LLC converters; soft commutation pulse width modulation converters; zero voltage switching; and zero current switching. Each topic is presented with full analysis, a showcase of the power stages of the converters, exercises and their solutions as well as simulation results, which mainly focus on the commutation analysis and output characteristic. This book is a valuable source of information for professionals working in power electronics, power conversion and design of high efficiency and high power density DC-DC converters and switch mode power supplies. The book also serves as a point of reference for engineers responsible for development projects and equipment in companies and research centers and a text for advanced students.
The Power Grid: Smart, Secure, Green and Reliable offers a diverse look at the traditional engineering and physics aspects of power systems, also examining the issues affecting clean power generation, power distribution, and the new security issues that could potentially affect the availability and reliability of the grid. The book looks at growth in new loads that are consuming over 1% of all the electrical power produced, and how combining those load issues of getting power to the regions experiencing growth in energy demand can be addressed. In addition, it considers the policy issues surrounding transmission line approval by regulators. With truly multidisciplinary content, including failure analysis of various systems, photovoltaic, wind power, quality issues with clean power, high-voltage DC transmission, electromagnetic radiation, electromagnetic interference, privacy concerns, and data security, this reference is relevant to anyone interested in the broad area of power grid stability.
Lead-Acid Batteries: Science and Technology: A Handbook of Lead-Acid Battery Technology and Its Influence on the Product, Second Edition presents a comprehensive overview of the technological processes of lead-acid battery manufacture and their influence on performance parameters. The book summarizes current knowledge on lead-acid battery production, presenting it in the form of an integral theory that is supported by ample illustrative material and experimental data that allows technologists and engineers to control technological processes in battery plants. In addition, the book provides university lecturers with a tool for a clear and in-depth presentation of lead-acid battery production in courses. This updated edition includes new supplementary material (text and illustrations) in chapters 2, 4, 6 and 16, as well as a brand new chapter on the action of carbon as an additive to the negative active material and the utilization of the lead-carbon supercapacitor electrodes. Substantial revisions of other chapters have been made, making the book beneficial for battery researchers, engineers and technologists.
Taking the Qinghai-Tibet Railway as an example, this book introduces intelligent processing for Global Positioning Data (GPS) data. Combining theory with practical applications, it provides essential insights into the Chinese Qinghai-Tibet Railway and novel methods of data processing for GPS satellite positioning, making it a valuable resource for all those working with train control systems, train positioning systems, satellite positioning, and intelligent data processing. As satellite positioning guarantees the safe and efficient operation of train control systems, it focuses on how to best process the GPS data collected, including methods for error detection, reduction and information fusion.
This book focuses on territorial policies as instruments for local development in Europe's periphery. Using a multiple-case research design in three typical case studies in the context of the Mediterranean island of Sardinia (Italy), we empirically test the hypothesis that the institutionalisation of the governance system is an independent variable that is capable of influencing the quality of public policy, intended as a dependent variable. According to this hypothesis, the two above-mentioned variables tend to change according to a linear and direct correlation: upward variation of the degree of institutionalisation of the governance system tends to correspond to upward variation in the quality of the policy, and vice versa. In our conclusions, we discuss the descriptive and prescriptive implications of the empirical findings of the research for the local development of peripheral areas. Regarding the descriptive implications, we explain how territorial policy-making can be articulated, based on the degree of institutionalisation of the governance system and the quality of the territorial policies. Regarding the prescriptive implications, we identify the best practices for territorial governance in order to improve the chances of local development in Europe's periphery.
This book reports on the formulation of a multi-stage optimization framework for the Danish power system, taking into account the real operational cost, the voltage constraints and the uncertainty associated to the forecasting errors of the wind power. It describes in detail the implementation of this framework into a simulation platform and its validation in real-world applications. The book especially focuses on automatic voltage control systems and on methods to handle uncertainty in them. All in all, it provides readers with a comprehensive overview of power system optimization and future trends in power system operation.
Against the backdrop of rapid advances in the energy sector, this book provides a concise overview of the complex challenges in the energy paradigm today, which revolve around the seemingly unsolvable energy equation. The author, an experienced energy professional, combines the various aspects of the energy transition into a single perspective. While highlighting a number of salient problems, he also explores grounds for optimism that these challenges can and will be met. After establishing the historical context, the book presents an analysis of today's energy industry, different energy sources, countries and determinants of energy demand, supplementing all sections with a wealth of global and local data. It subsequently proposes measures to solve the energy equation and a roadmap for a sustainable future, based on more efficient energy use, cleaner energy production and advanced technologies.
This book is a collection of selected papers presented at the 10th International Conference on Scientific Computing in Electrical Engineering (SCEE), held in Wuppertal, Germany in 2014. The book is divided into five parts, reflecting the main directions of SCEE 2014: 1. Device Modeling, Electric Circuits and Simulation, 2. Computational Electromagnetics, 3. Coupled Problems, 4. Model Order Reduction, and 5. Uncertainty Quantification. Each part starts with a general introduction followed by the actual papers. The aim of the SCEE 2014 conference was to bring together scientists from academia and industry, mathematicians, electrical engineers, computer scientists, and physicists, with the goal of fostering intensive discussions on industrially relevant mathematical problems, with an emphasis on the modeling and numerical simulation of electronic circuits and devices, electromagnetic fields, and coupled problems. The methodological focus was on model order reduction and uncertainty quantification.
This book introduces the space community to the novel SpaceFibre protocol, developed under the guidance of the European Space Agency (ESA) as the forthcoming, high speed (Gbps) communication protocol for satellite on-board communication. Since SpaceFibre is expected to follow the success of its predecessor SpaceWire protocol (Mbps), the authors provide a system-level perspective for the end-user willing to adopt this latest technology for future space missions. The authors provide a complete view of the SpaceFibre protocol, together with an analysis of all the necessary hardware and software components to integrate this technology onboard a satellite. The text guides potential system adopters toward understanding the protocol, analyzing strengths, weaknesses and performances. Practical design examples and prototype performance measurements in reference scenarios are also included.
This book brings together successful stories of deployment of synchrophasor technology in managing the power grid. The authors discuss experiences with large scale deployment of Phasor Measurement Units (PMUs) in power systems across the world, enabling readers to take this technology into control center operations and develop good operational procedures to manage the grid better, with wide area visualization tools using PMU data.
Loop control is an essential area of electronics engineering that today's professionals need to master. A control system is a complex electronics architecture involving setpoints and targets. One simple example is the cruise control system of an automobile. Rather than delving into extensive theory, this practical book focuses on what power electronics engineers really need to know for compensating or stabilizing a given system. Engineers can turn instantly to practical sections with numerous design examples and ready-made formulas to help them with their projects in the field. Readers also find coverage of the underpinnings and principles of control loops so they can gain a more complete understanding of the material. This authoritative volume explains how to conduct analysis of control systems and provides extensive details on practical compensators. It helps engineers measure their system, showing how to verify if a prototype is stable and features enough design margin. Moreover, professionals learn how to secure high-volume production by bench-verified safety margins.
This book provides a detailed description of fault tolerant design techniques for smart power drivers and their application in the design of automotive airbag ICs to ensure correct deployment. The book begins with an introduction to the nature of electrical loads in the car, then moves on to describe various current sensing circuits, featuring thermal simulations. It shows how simple design techniques can be applied to ensure appropriate functionality of the IC under any power up condition. It concludes by introducing diagnostic circuits and measurement results. This book is a useful reference for automotive IC designers and provides specifications and design guidelines not found in the current literature. |
![]() ![]() You may like...
Horizons of Fractal Geometry and Complex…
Robert G. Niemeyer, Erin P. J. Pearse, …
Paperback
R3,333
Discovery Miles 33 330
Ellipsoidal Calculus for Estimation and…
Alexander Kurzhanski, Istvan Valyi
Hardcover
R3,069
Discovery Miles 30 690
Calculus, Metric Edition
James Stewart, Saleem Watson, …
Hardcover
Large-Scale Optimization with…
Lorenz T. Biegler, Thomas F. Coleman, …
Hardcover
R3,002
Discovery Miles 30 020
Optimal Trajectory Tracking of Nonlinear…
Jakob Loeber
Hardcover
Research Directions in Symplectic and…
Bahar Acu, Catherine Cannizzo, …
Hardcover
Computational Intelligence and…
Maude Josee Blondin, Panos M. Pardalos, …
Hardcover
Introduction to Nonlinear and Global…
Eligius M. T. Hendrix, Boglarka G. -Toth
Hardcover
R1,539
Discovery Miles 15 390
|