Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Energy technology & engineering > Electrical engineering
This book describes the recent innovation of deep in-memory architectures for realizing AI systems that operate at the edge of energy-latency-accuracy trade-offs. From first principles to lab prototypes, this book provides a comprehensive view of this emerging topic for both the practicing engineer in industry and the researcher in academia. The book is a journey into the exciting world of AI systems in hardware.
This is the second revised and enhanced edition of the book Gas Turbine Design, Components and System Integration written by a world-renowned expert with more than forty years of active gas turbine R&D experience. It comprehensively treats the design of gas turbine components and their integration into a complete system. Unlike many currently available gas turbine handbooks that provide the reader with an overview without in-depth treatment of the subject, the current book is concentrated on a detailed aero-thermodynamics, design and off-deign performance aspects of individual components as well as the system integration and its dynamic operation. This new book provides practicing gas turbine designers and young engineers working in the industry with design material that the manufacturers would keep proprietary. The book is also intended to provide instructors of turbomachinery courses around the world with a powerful tool to assign gas turbine components as project and individual modules that are integrated into a complete system. Quoting many statements by the gas turbine industry professionals, the young engineers graduated from the turbomachinery courses offered by the author, had the competency of engineers equivalent to three to four years of industrial experience.
This book collects high-quality research papers presented at the International Conference on Computing Applications in Electrical & Electronics Engineering, held at Rajkiya Engineering College, Sonbhadra, India, on August 30-31, 2019. It provides novel contributions in computational intelligence, together with valuable reference material for future research. The topics covered include: big data analytics, IoT and smart infrastructures, machine learning, artificial intelligence and deep learning, crowd sourcing and social intelligence, natural language processing, business intelligence, high-performance computing, wireless, mobile and green communications, ad-hoc, sensor and mesh networks, SDN and network virtualization, cognitive systems, swarm intelligence, human-computer interaction, network and information security, intelligent control, soft computing, networked control systems, renewable energy sources and technologies, biomedical signal processing, pattern recognition and object tracking, and sensor devices and applications.
Fundamental of Engineering Electromagnetics not only presents the fundamentals of electromagnetism in a concise and logical manner, but also includes a variety of interesting and important applications. While adapted from his popular and more extensive work, Field and Wave Electromagnetics, this text incorporates a number of innovative pedagogical features. Each chapter begins with an overview which serves to offer qualitative guidance to the subject matter and motivate the student. Review questions and worked examples throughout each chapter reinforce the student's understanding of the material. Remarks boxes following the review questions and margin notes throughout the book serve as additional pedagogical aids.
This book looks at the control of voltage source converter based high voltage direct current (VSC-HVDC). The objective is to understand the control structure of the VSC-HVDC system and establish the tuning criteria for the proportional-integral (PI) control of the converter controllers. Coverage includes modeling of the VSC-based HVDC transmission system using MATLAB and Simulink simulation package; implementation of control strategies for the VSC-based HVDC transmission system; and analysis of the developed system behavior under different conditions (normal and fault conditions). The book provides researchers, students, and engineers working in electrical power system transmission and power electronics and control in power transmission with a good understanding of the VSC-based HVDC transmission system concept and its behavior.
Respected for its accuracy, its smooth and logical flow of ideas, and its clear presentation, Field and Wave Electromagnetics has become an established textbook in the field of electromagnetics. This book builds the electromagnetic model using an axiomatic approach in steps: first for static electric fields, then for static magnetic fields, and finally for time-varying fields leading to Maxwell's equations. This approach results in an organised and systematic development of the subject matter. Applications of derived relations to fundamental phenomena and electromagnetic technologies are explained.
This book presents a novel control method for power converters, referred to as m-mode control. It provides an overview of traditional control methods for inverters - e.g. PWM and SVPWM - and the theory of the m-mode control method, while also discussing and applying m-mode control on various types of converters (including three-phase, nine-switch, five-leg and multi-level inverters, PWM rectifiers and modular multi-level converters). The book provides readers with sufficient background and understanding to delve deeper into the topic of SVPWM control. It is also a valuable guide for engineers and researchers whose work involves power converter control.
This book provides a comprehensive overview of protection schemes used for power transformers and describes the internal fault conditions and external abnormalities that may disrupt the operation of a power transformer. It also highlights the issues of current protective schemes, which pose several challenges in terms of the detection of internal faults and abnormalities, including computational burden, reduced accuracy, difficulty to implement, increased cost, computational complexity, impermeability to high resistance faults (HRF), and malfunction in conditions like cross-country fault. To address these problems, the book develops an effective novel transformer protection scheme that can eliminate all the said difficulties using an innovative algorithm. Given its scope, it is a useful resource for researchers and practitioners working in the field of power system protection, allowing them to design novel protection schemes, and providing insights into the hardware validation of developed technique.
This book discusses advanced technologies for applications in renewable energy and power systems. The topics covered include neural network applications in power electronics, deep learning applications in power systems, design and simulation of multilevel inverters, solid state transformers, neural network applications for fault detection in power electronics, etc. The book also discusses the important role of artificial intelligence in power systems, and machine learning for renewable energy. This book will be of interest to researchers, professionals, and technocrats looking at power systems, power distribution, and grid operations.
This book is a concise reader-friendly introductory guide to understanding renewable energy technologies. By using simplified classroom-tested methods developed while teaching the subject to engineering students, the authors explain in simple language an otherwise complex subject in terms that enable readers to gain a rapid fundamental understanding of renewable energy, including basic principles, the different types, energy storage, grid integration, and economies. This powerful tutorial is a great resource for students, engineers, technicians, analysts, investors, and other busy professionals who need to quickly acquire a solid understanding of the science of renewable energy technology.
This book presents select proceedings of the International Conference on Advances in Electrical Control and Signal Systems (AECSS) 2019. The focus is on the current developments in control and signal systems in electrical engineering, and covers various topics such as power systems, energy systems, micro grid, smart grid, networks, fuzzy systems and their control. The book also discusses various properties and performance of signal systems and their applications in different fields. The contents of this book can be useful for students, researchers as well as professionals working in power and energy systems, and other related fields.
This book presents selected papers from the 2021 International Conference on Electrical and Electronics Engineering (ICEEE 2020), held on January 2-3, 2021. The book focuses on the current developments in various fields of electrical and electronics engineering, such as power generation, transmission and distribution; renewable energy sources and technologies; power electronics and applications; robotics; artificial intelligence and IoT; control, automation and instrumentation; electronics devices, circuits and systems; wireless and optical communication; RF and microwaves; VLSI; and signal processing. The book is a valuable resource for academics and industry professionals alike.
The conference has an interdisciplinary focus and aims to bring together scientists - mathematicians, electrical engineers, computer scientists, and physicists, from universities and industry - to have in-depth discussions of the latest scientific results in Computational Science and Engineering relevant to Electrical Engineering and to stimulate and inspire active participation of young researchers.
Like electricity and water, data and computing power are necessary commodities in the modern-day economy. A model for the effective regulation and provisioning of computational services will follow a similar paradigm as the existent model for traditional utilities. Emerging Research Surrounding Power Consumption and Performance Issues in Utility Computing explores methods of treating computing resources and materials as a standard utility, charging customers based on their usage and promoting competition among service providers. Including both benefits and hindrances, as well as theoretical concepts and practical considerations, this book provides an in-depth discussion of the utility computing paradigm for computer engineers, service providers, consumers, and academics in the field of computer science. This book includes emerging research on subjects including, but not limited to, Graphical Processing Unit (GPU) architectures, green computing, VMware, and device manufacturing techniques.
Research on deformable and wearable electronics has promoted an increasing demand for next-generation power sources with high energy/power density that are low cost, lightweight, thin and flexible. One key challenge in flexible electrochemical energy storage devices is the development of reliable electrodes using open-framework materials with robust structures and high performance. Based on an exploration of 3D porous graphene as a flexible substrate, this book constructs free-standing, binder-free, 3D array electrodes for use in batteries, and demonstrates the reasons for the research transformation from Li to Na batteries. It incorporates the first principles of computational investigation and in situ XRD, Raman observations to systematically reveal the working mechanism of the electrodes and structure evolution during ion insertion/extraction. These encouraging results and proposed mechanisms may accelerate further development of high rate batteries using smart nanoengineering of the electrode materials, which make "Na ion battery could be better than Li ion battery" possible.
"An Exploration into China's Economic Development and Electricity Demand by the Year 2050," is an exploratory study of national and regional economic development, energy demand and electricity demand in China by the year of 2050. China s economy grows rapidly and it is now the second largest economy in the world. In 2010, GDP reached 40 trillion Yuan and electricity consumption was second only to the United States, reaching 4.19 trillion kWh. Many people follow future (long-term) trends of Chinese economic development and demand for electricity closely and are especially interested in how development will look in 2030 and 2050. Based on the ILE4, thisbook examines the main features of
China's economic development and electricity consumption since the
economic reform of the 1980's. It includes an analysis of the
intrinsic connection between electricity demand and economic growth
and the changing trends of the adjustment of economic structure,
regional layout optimization and development of the energy
intensive industry, as well as how these factors impact China's
demand for electricity. In addition, the book considers the next 20
years of China's economic development and growing demand for
electricity based on the detailed simulations conducted by ILE4 in
regional economic development and electricity consumption in 2030
as well as the prospective of China's electricity consumption and
economic growth in the year 2050.
This book presents a selection of recently developed collective and computational intelligence techniques, which it subsequently applies to energy management problems ranging from performance analysis to economic analysis, and from strategic analysis to operational analysis, with didactic numerical examples. As a form of intelligence emerging from the collaboration and competition of individuals, collective and computational intelligence addresses new methodological, theoretical, and practical aspects of complex energy management problems. The book offers an excellent reference guide for practitioners, researchers, lecturers and postgraduate students pursuing research on intelligence in energy management. The contributing authors are recognized researchers in the energy research field.
This book presents an in-depth overview of recent work related to the safety, security, and privacy of cyber-physical systems (CPSs). It brings together contributions from leading researchers in networked control systems and closely related fields to discuss overarching aspects of safety, security, and privacy; characterization of attacks; and solutions to detecting and mitigating such attacks. The book begins by providing an insightful taxonomy of problems, challenges and techniques related to safety, security, and privacy for CPSs. It then moves through a thorough discussion of various control-based solutions to these challenges, including cooperative fault-tolerant and resilient control and estimation, detection of attacks and security metrics, watermarking and encrypted control, privacy and a novel defense approach based on deception. The book concludes by discussing risk management and cyber-insurance challenges in CPSs, and by presenting the future outlook for this area of research as a whole. Its wide-ranging collection of varied works in the emerging fields of security and privacy in networked control systems makes this book a benefit to both academic researchers and advanced practitioners interested in implementing diverse applications in the fields of IoT, cooperative autonomous vehicles and the smart cities of the future.
This book covers the performance aspects of nanocomposite supercapacitor materials based on transition metal oxides, activated carbon, carbon nanotubes, carbon nanofibers, graphene and conducting polymers. It compares the performance of simple electrode materials versus binary and ternary composites, while highlighting the advantages and challenges of different supercapacitor electrode materials. This book is part of the Handbook of Nanocomposite Supercapacitor Materials. Supercapacitors have emerged as promising devices for electrochemical energy storage, playing an important role in energy harvesting for meeting the current demands of increasing global energy consumption. The handbook covers the materials science and engineering of nanocomposite supercapacitors, ranging from their general characteristics and performance to materials selection, design and construction. Covering both fundamentals and recent developments, this handbook serves a readership encompassing students, professionals and researchers throughout academia and industry, particularly in the fields of materials chemistry, electrochemistry, and energy storage and conversion. It is ideal as a reference work and primary resource for any introductory senior-level undergraduate or beginning graduate course covering supercapacitors.
The book focuses more on the study of cruise economy industry chain based on the previous editions and the latest trend of China's cruise economy. It includes the Special Topic: Cruise Economic Reform and Innovation in the New Era, explores Asia cruise economic prosperity index, China's cruise economy whole-industry-chain strategy in the new era, and the development of cruise destinations in the context of the Yangtze River Delta integration. The volume provides a good reference for better promoting the high-quality development of China's cruise market.
This book focuses on modelling and simulation, control and optimization, signal processing, and forecasting in selected nonlinear dynamical systems, presenting both literature reviews and novel concepts. It develops analytical or numerical approaches, which are simple to use, robust, stable, flexible and universally applicable to the analysis of complex nonlinear dynamical systems. As such it addresses key challenges are addressed, e.g. efficient handling of time-varying dynamics, efficient design, faster numerical computations, robustness, stability and convergence of algorithms. The book provides a series of contributions discussing either the design or analysis of complex systems in sciences and engineering, and the concepts developed involve nonlinear dynamics, synchronization, optimization, machine learning, and forecasting. Both theoretical and practical aspects of diverse areas are investigated, specifically neurocomputing, transportation engineering, theoretical electrical engineering, signal processing, communications engineering, and computational intelligence. It is a valuable resource for students and researchers interested in nonlinear dynamics and synchronization with applications in selected areas.
This book introduces readers to electric circuits with variable loads and voltage regulators. It defines invariant relationships for numerous parameters, and proves the concepts characterizing these circuits. Moreover, the book presents the fundamentals of electric circuits and develops circuit theorems, while also familiarizing readers with generalized equivalent circuits and using projective geometry to interpret changes in operating regime parameters. It provides useful expressions for normalized regime parameters and changes in them, as well as convenient formulas for calculating currents. This updated and extended third edition features new chapters on the use of invariant properties in two-port circuits, invariant energy characteristics for limited single-valued two-port circuits, and on testing projective coordinates. Given its novel geometrical approach to real electrical circuits, the book offers a valuable guide for engineers, researchers, and graduate students who are interested in basic electric circuit theory and the regulation and monitoring of power supply systems. |
You may like...
Data Reimagined - Building Trust One…
Jodi Daniels, Justin Daniels
Hardcover
Directions for Designing, Making, and…
F E (Frank Eugene) 1873- Austin
Hardcover
R751
Discovery Miles 7 510
The Bell System Technical Journal…
American Telephone and Telegraph Comp
Hardcover
R1,023
Discovery Miles 10 230
|