![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Energy technology & engineering > Electrical engineering
Energy Storage in Energy Markets reviews the modeling, design, analysis, optimization and impact of energy storage systems in energy markets in a way that is ideal for an audience of researchers and practitioners. The book provides deep insights on potential benefits and revenues, economic evaluation, investment challenges, risk analysis, technical requirements, and the impacts of energy storage integration. Heavily referenced and easily accessible to policymakers, developers, engineer, researchers and students alike, this comprehensive resource aims to fill the gap in the role of energy storage in pool/local energy/ancillary service markets and other multi-market commerce. Chapters elaborate on energy market fundamentals, operations, energy storage fundamentals, components, and the role and impact of storage systems on energy systems from different aspects, such as environmental, technical and economics, the role of storage devices in uncertainty handling in energy systems and their contributions in resiliency and reliability improvement.
Distributed Energy Resources in Local Integrated Energy Systems: Optimal Operation and Planning reviews research and policy developments surrounding the optimal operation and planning of DER in the context of local integrated energy systems in the presence of multiple energy carriers, vectors and multi-objective requirements. This assessment is carried out by analyzing impacts and benefits at local levels, and in distribution networks and larger systems. These frameworks represent valid tools to provide support in the decision-making process for DER operation and planning. Uncertainties of RES generation and loads in optimal DER scheduling are addressed, along with energy trading and blockchain technologies. Interactions among various energy carriers in local energy systems are investigated in scalable and flexible optimization models for adaptation to a number of real contexts thanks to the wide variety of generation, conversion and storage technologies considered, the exploitation of demand side flexibility, emerging technologies, and through the general mathematical formulations established.
Exergy: Energy, Environment and Sustainable Development, Third Edition provides a systematic overview of new and developed systems, new practical examples, problems and case studies on several key topics ranging from the basics of thermodynamic concepts to advanced exergy analysis techniques in a wide range of applications. With an ancillary online package and solutions manual, this reference connects exergy with three essential areas in terms of energy, environment and sustainable development. As such, it is a thorough reference for professionals who are solving problems related to design, analysis, modeling and assessment.
Heat Transfer Engineering: Fundamentals and Techniques reviews the core mechanisms of heat transfer and provides modern methods to solve practical problems encountered by working practitioners, with a particular focus on developing engagement and motivation. The book reviews fundamental concepts in conduction, forced convection, free convection, boiling, condensation, heat exchangers and mass transfer succinctly and without unnecessary exposition. Throughout, copious examples drawn from current industrial practice are examined with an emphasis on problem-solving for interest and insight rather than the procedural approaches often adopted in courses. The book contains numerous important solved and unsolved problems, utilizing modern tools and computational sources wherever relevant. A subsection on common issues and recent advances is presented in each chapter, encouraging the reader to explore a greater diversity of problems.
Distributed Renewable Energies for Off-Grid Communities: Empowering a Sustainable, Competitive, and Secure Twenty-First Century, Second Edition, is a fully revised reference on advances in achieving successful energy transition. Addressing the highly dynamic, complex and multidimensional process of a dominant socio-technical system transforming into another, this up-to-date reference addresses all stages of this complex process with data and figures to demonstrate how to tackle the process of changing a society's energy circumstance. This new edition provides an updated picture of renewables in communities and their use, covering energy concepts, strategies, prospects and combining all aspects to provide a roadmap to self-sustainable development. Addressing the influence of society on the development of renewable industry, this book provides guidelines with case studies, along with trends and innovative practices regarding renewable energy and their applications with a goal of successfully establishing smooth energy transitions in self-sustainable communities.
Advances in Thermal Energy Storage Systems, 2nd edition, presents a fully updated comprehensive analysis of thermal energy storage systems (TES) including all major advances and developments since the first edition published. This very successful publication provides readers with all the information related to TES in one resource, along with a variety of applications across the energy/power and construction sectors, as well as, new to this edition, the transport industry. After an introduction to TES systems, editor Dr. Prof. Luisa Cabeza and her team of expert authors consider the source, design and operation of the use of water, molten salts, concrete, aquifers, boreholes and a variety of phase-change materials for TES systems, before analyzing and simulating underground TES systems. This edition benefits from 5 new chapters covering the most advanced technologies including sorption systems, thermodynamic and dynamic modelling as well as applications to the transport industry and the environmental and economic aspects of TES. It will benefit researchers and academics of energy systems and thermal energy storage, construction engineering academics, engineers and practitioners in the energy and power industry, as well as architects of plants and storage systems and R&D managers.
Machine Learning and Data Science in the Power Generation Industry explores current best practices and quantifies the value-add in developing data-oriented computational programs in the power industry, with a particular focus on thoughtfully chosen real-world case studies. It provides a set of realistic pathways for organizations seeking to develop machine learning methods, with a discussion on data selection and curation as well as organizational implementation in terms of staffing and continuing operationalization. It articulates a body of case study-driven best practices, including renewable energy sources, the smart grid, and the finances around spot markets, and forecasting.
Solar Heating and Cooling Systems: Fundamentals, Experiments and Applications provides comprehensive coverage of this modern energy issue from both a scientific and technical level that is based on original research and the synthesis of consistent bibliographic material that meets the increasing need for modernization and greater energy efficiency to significantly reduce CO2 emissions. Ioan Sarbu and Calin Sebarchievici present a comprehensive overview of all major solar energy technologies, along with the fundamentals, experiments, and applications of solar heating and cooling systems. Technical, economic, and energy saving aspects related to design, modeling, and operation of these systems are also explored. This reference includes physical and mathematical concepts developed to make this publication a self-contained and up-to-date source of information for engineers, researchers, and professionals who are interested in the use of solar energy as an alternative energy source.
Hybrid Renewable Energy Systems and Microgrids covers the modeling and analysis for each type of integrated and operational hybrid energy system. Looking at the fundamentals for conventional energy systems, decentralized generation systems, RES technologies and hybrid integration of RES power plants, the most important contribution this book makes is combining emerging energy systems that improve micro and smart grid systems and their components. Sections cover traditional system characteristics, features, challenges and benefits of hybrid energy systems over the conventional power grid, the deployment of emerging power electronic technologies, and up-to-date electronic devices and systems, including AC and DC waveforms. Conventional, emerging and hierarchical control methods and technologies applied in microgrid operations are covered to give researchers and practitioners the information needed to ensure reliability, resilience and flexibility of implemented hybrid energy systems.
Power Quality in Modern Power Systems presents an overview of power quality problems in electrical power systems, for identifying pitfalls and applying the fundamental concepts for tackling and maintaining the electrical power quality standards in power systems. It covers the recent trends and emerging topics of power quality in large scale renewable energy integration, electric vehicle charging stations, voltage control in active distribution network and solutions to integrate large scale renewable energy into the electric grid with several case studies and real-time examples for power quality assessments and mitigations measures. This book will be a practical guide for graduate and post graduate students of electrical engineering, engineering professionals, researchers and consultants working in the area of power quality.
Large rural areas in some regions of the world are still grappling with the challenge of electrification. The optimal solution is to provide reliable energy without adding more fossil fuel plants by using distributed renewable generation. Microgrids are part of that solution; they are small networks of electricity users, with a local generator that is attached to a centralized larger grid, but which is also able to function independently. They need to be robust and resilient in order to provide reliable power, including in harsh climates. For remote areas microgrids have the advantage of offering an electricity supply even if there are problems with the larger power grid. This book focuses on the challenges of rural electrification, particularly in poorer regions. It covers low voltage DC distribution system for various applications including charging of electric vehicles (EV). Written by a large team of authors with a wide range of relevant experiences, the book addresses microgrid architectures, converters, energy storage, control, EV integration, business models and economic scheduling, and the role of blockchain technology. The authors have used case studies to provide illustrative examples of the technologies discussed and solutions proposed.
Variable Generation, Flexible Demand looks at a future in which power system researchers, operators and analysts need to predict variable renewable generation and schedule demand to match it. Contributors survey the significant expansion in the role of flexible demand in balancing supply and demand in conjunction with flexible generation in 'peaking plants' and energy storage as the proportion of variable renewable generation rises in many systems across the world. Supported with case studies, the book examines practical ways that demand flexibility can play a constructive role as more systems move towards higher levels of renewable generation in their electricity mix.
Converter-Based Dynamics and Control of Modern Power Systems addresses the ongoing changes and challenges in rotating masses of synchronous generators, which are transforming dynamics of the electrical system. These changes make it more important to consider and understand the role of power electronic systems and their characteristics in shaping the subtleties of the grid and this book fills that knowledge gap. Balancing theory, discussion, diagrams, mathematics, and data, this reference provides the information needed to acquire a thorough overview of resilience issues and frequency definition and estimation in modern power systems. This book offers an overview of classical power system dynamics and identifies ways of establishing future challenges and how they can be considered at a global level to overcome potential problems. The book is designed to prepare future engineers for operating a system that will be driven by electronics and less by electromechanical systems.
Low Carbon Energy Technologies for Sustainable Energy Systems examines, investigates, and integrates current research aimed at operationalizing low carbon technologies within complex transitioning energy economies. Scholarly research has traditionally focused on the technical aspects of exploitation, R&D, operation, infrastructure, and decommissioning, while approaches which can realistically inform their reception and scale-up across real societies and real markets are piecemeal and isolated in separate literatures. Addressing both the technical foundations of each technology together with the sociotechnical ways in which they are spread in markets and societies, this work integrates the technoeconomic assessment of low carbon technologies with direct discussion on legislative and regulatory policies in energy markets. Chapters address issues, such as social acceptance, consumer awareness, environmental valuation systems, and the circular economy, as low carbon technologies expand into energy systems sustainability, sensitivity, and stability. This collective research work is relevant to both researchers and practitioners working in sustainable energy systems. The combination of these features makes it a timely book that is useful and attractive to university students, researchers, academia, and public or private energy policy makers.
Techno-Economic Challenges of Green Ammonia as an Energy Vector presents the fundamentals, techno-economic challenges, applications, and state-of-the-art research in using green ammonia as a route toward the hydrogen economy. This book presents practical implications and case studies of a great variety of methods to recover stored energy from ammonia and use it for power, along with transport and heating applications, including its production, storage, transportation, regulations, public perception, and safety aspects. As a unique reference in this field, this book can be used both as a handbook by researchers and a source of background knowledge by graduate students developing technologies in the fields of hydrogen economy, hydrogen energy, and energy storage.
Electric vehicles (EV), are being hailed as part of the solution to reducing urban air pollution and noise, and staving off climate change. Their success hinges on the availability and reliability of fast and efficient charging facilities, both stationary and in-motion. These in turn depend on appropriate integration with the grid, load and outage management, and on the mitigation of loads using renewable energy and storage. Charging management to preserve the battery will also play a key role. This book covers the latest in charging technology; stationary as well as wireless and in-motion. Grid integration, simulations, fast charging, and battery management are also addressed. The objective of this book is to provide readers with an in-depth knowledge about EV charging infrastructure, and grid integration issues and solutions. The book serves as a reference for researchers in academia and industry, covering almost every aspect of the charging and grid integration of EVs. |
You may like...
Smart Sensors and MEMS - Intelligent…
S. Nihtianov, A. Luque
Paperback
Uncertainties in Modern Power Systems
Ahmed F. Zobaa, Shady H.E Abdel Aleem
Paperback
R3,339
Discovery Miles 33 390
Ultra-Supercritical Coal Power Plants…
Dongke Zhang Ftse
Hardcover
Hybrid-Renewable Energy Systems in…
Hina Fathima, Prabaharan N, …
Paperback
Practical Grounding, Bonding, Shielding…
G. Vijayaraghavan, Mark Brown, …
Paperback
R1,427
Discovery Miles 14 270
The Electrostatic Accelerator - A…
Ragnar Hellborg, Harry J. Whitlow
Paperback
R754
Discovery Miles 7 540
|