![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Energy technology & engineering > Electrical engineering
Decentralized Frameworks for Future Power Systems: Operation, Planning and Control Perspectives is the first book to consider the principles and applications of decentralized decision-making in future power networks. The work opens by defining the emerging power system network as a system-of-systems (SoS), exploring the guiding principles behind optimal solutions for operation and planning problems. Chapters emphasize the role of regulations, prosumption behaviors, and the implementation of transactive energy processes as key components in decentralizing power systems. Contributors explore local markets, distribution system operation and proactive load management. The role of cryptocurrencies in smoothing transactive distributional challenges are presented. Final sections cover energy system planning, particularly in terms of consumer smart meter technologies and distributed optimization methods, including artificial intelligence, meta-heuristic, heuristic, mathematical and hybrid approaches. The work closes by considering decentralization across the cybersecurity, distributed control, market design and power quality optimization vertices.
Electric Motor Drives and Its Applications with Simulation Practices provides comprehensive coverage of the concepts of electric motor drives and their applications, along with their simulation using MATLAB and other software tools. The book helps engineers and students improve their software skills by learning to simulate various electric drives and applications and assists with new ideas in the simulation of electrical, electronics and instrumentations systems. Covering power electronic converter fed drives and simulation model building using all possible software as well as the operation and relevant applications discussed, the book provides a number of examples and step-by-step procedures for successful implementation. Intended for engineers, students and research scholars in industry who are working in the field of power electronics and drives, this book provides a brief introduction to simulation software under different environments.
Relevant Characteristics of Power Lines Passing through Urban Areas covers a variety of problems in electric-power delivery that were considered for a long time in professional and scientific circles unsolvable. Taking into account the influence of all surrounding metal installations on the relevant characteristics of HV and EHV lines passing through urban and/or suburban areas, this reference provides safe and economical solutions on how to check and achieve prescribed safety conditions, determine the dangerous and harmful inductive influence of HV and EHV lines, enable compensation of deficiency for all unknowns, understand relevant data concerning surrounding metal installations, and more. This book is necessary for properly dimensioning cable systems, considering the existing underground structures near substations and providing engineers with the necessary information they need to design normal operations and determine fault events.
The intermittency of renewable energy sources is making increased deployment of storage technology necessary. Technologies are needed with high round-trip efficiency and at low cost to allow renewables to undercut fossil fuels. The cost of lithium batteries has fallen, but producing them comes with a substantial carbon footprint, as well as a cost to the local environment. Compressed air energy storage (CAES) uses excess electricity, particularly from wind farms, to compress air. Re-expansion of the air then drives machinery to recoup the electric power. Prototypes have capacities of several hundred MW. Challenges lie in conserving the thermal energy associated with compressing air and leakage of that heat, materials, power electronics, connection with the power generator, and grid integration. This comprehensive book provides a systematic overview of the current state of CAES technology. After an introduction to motivation and principles, the key components are covered, and then the principal types of systems in the order of technical maturity: diabatic, adiabatic, and isothermal. Experts from industry write about their experiences with existing major systems and prototypes. Economic aspects, power electronics and machinery, as well as special systems for offshore applications, are dealt with. Researchers in academia and industry alike, in particular at energy storage technology manufacturers and utilities, as well as advanced students and energy experts in think tanks will find this work valuable reading.
Power Systems Modelling and Fault Analysis: Theory and Practice, Second Edition, focuses on the important core areas and technical skills required for practicing electrical power engineers. Providing a comprehensive and practical treatment of the modeling of electrical power systems, the book offers students and professionals the theory and practice of fault analysis of power systems, covering detailed and advanced theories and modern industry practices. The book describes relevant advances in the industry, such as international standards developments and new generation technologies, such as wind turbine generators, fault current limiters, multi-phase fault analysis, the measurement of equipment parameters, probabilistic short-circuit analysis, and more.
Microgrids have emerged as a promising solution for accommodating the integration of renewable energy resources. But the intermittency of renewable generation is posing challenges such as voltage/frequency fluctuations, and grid stability issues in grid-connected modes. Model predictive control (MPC) is a method for controlling a process while satisfying a set of constraints. It has been in use for chemical plants and in oil refineries since the 1980s, but in recent years has been deployed for power systems and electronics as well. This concise work for researchers, engineers and graduate students focuses on the use of MPC for distributed renewable power generation in microgrids. Fluctuating outputs from renewable energy sources and variable load demands are covered, as are control design concepts. The authors provide examples and case studies to validate the theory with both simulation and experimental results and review the shortcomings and future developments. Chapters treat power electronic converters and control; modelling and hierarchical control of microgrids; use of MPC for PV and wind power; voltage support; parallel PV-ESS microgrids; secondary restoration capability; and tertiary power flow optimization.
Scheduling and Operation of Virtual Power Plants: Technical Challenges and Electricity Markets provides a multidisciplinary perspective on recent advances in VPPs, ranging from required infrastructures and planning to operation and control. The work details the required components in a virtual power plant, including smartness of power system, instrument and information and communication technologies (ICTs), measurement units, and distributed energy sources. Contributors assess the proposed benefits of virtual power plant in solving problems of distributed energy sources in integrating the small, distributed and intermittent output of these units. In addition, they investigate the likely technical challenges regarding control and interaction with other entities. Finally, the work considers the role of VPPs in electricity markets, showing how distributed energy resources and demand response providers can integrate their resources through virtual power plant concepts to effectively participate in electricity markets to solve the issues of small capacity and intermittency. The work is suitable for experienced engineers, researchers, managers and policymakers interested in using VPPs in future smart grids.
Power electronics converters are devices that change parameters of electric power, such as voltage and frequency, as well as between AC and DC. They are essential parts of both advanced drives, for machines and vehicles, and energy systems to meet required flexibility and efficiency criteria. In energy systems both stationary and mobile, control and converters help ensure reliability and quality of electric power supplies. This reference in two volumes is useful reading for scientists and researchers working with power electronics, drives and energy systems; manufacturers developing power electronics for advanced applications; professionals working in the utilities sector; and for advanced students of subjects related to power electronics. Volume 1 covers converters and control for drives, while Volume 2 addresses clean generation and power grids. The chapters enable the reader to directly apply the knowledge gained to their research and designs. Topics include reliability, WBG power semiconductor devices, converter topology and their fast response, matrix and multilevel converters, nonlinear dynamics, AI and machine learning. Robust modern control is covered as well. A coherent chapter structure and step-by-step explanation provide the reader with the understanding to pursue their research.
Storing Energy: With Special Reference to Renewable Energy Sources, Second Edition has been fully revised and substantially extended to provide up-to-date and essential discussion that will support the needs of the world's future energy and climate change policies. New sections cover thermal energy storage, tidal storage, sustainability issues in relation to storing energy and impacts on global energy markets. Various systems are discussed, including mechanical/kinetic, thermal, electrochemical and other chemical, as well as other emerging technologies. Incorporating advancements described in the book will help the people of the world further overcome the problems related to future energy and climate change.
Power System Fault Diagnosis: A Wide Area Measurement Based Intelligent Approach is a comprehensive overview of the growing interests in efficient diagnosis of power system faults to reduce outage duration and revenue losses by expediting the restoration process. This book illustrates intelligent fault diagnosis schemes for power system networks, at both transmission and distribution levels, using data acquired from phasor measurement units. It presents the power grid modeling, fault modeling, feature extraction processes, and various fault diagnosis techniques, including artificial intelligence techniques, in steps. The book also incorporates uncertainty associated with line parameters, fault information (resistance and inception angle), load demand, renewable energy generation, and measurement noises.
Residual Current Devices: Selection, Operation, and Testing looks at the evolution in construction types of residual current devices and discusses the types and functional properties of contemporary systems. The principle of operation of elements is explained, along with the primary parameters of the devices and their selection and application, as well as the rules of backup protection of residual current devices. The requirements of the standards concerning the importance of obligatory use of devices are included, along with explanation of the needed protection in case of fault, additional protection, and protection against fire. The issue of residual current device operation in circuits with nonsinusoidal currents is detailed, giving special attention to the unique results of residual current device testing and tripping under distorted earth fault currents. In modern electrical and electronic installations, new complex challenges arise for designers and maintenance staff. This book is an essential guide to address those challenges, and its problem-solving section is useful for students, tutors, and academics, as well as engineers involved in the process of design, maintenance, and verification of safety in low-voltage electrical installations.
Hybrid Technologies for Power Generation addresses the topics related to hybrid technologies by coupling conventional thermal engines with novel technologies, including fuel cells, batteries, thermal storage and electrolysis, and reporting on the most recent advances concerning transport and stationary applications. Potential operating schemes of hybrid power generation systems are covered, highlighting possible combinations of technology and guideline selection according to the energy demands of end-users. Going beyond state-of-the-art technological developments for processes, devices and systems, this book discusses the environmental impact and existing hurdles of moving from a single device to new approaches for efficient energy generation, transfer, conversion, high-density storage and consumption. By describing the practical viability of novel devices coupled to conventional thermal devices, this book has a decisive impact in energy system research, supporting those in the energy research and engineering communities.
Mechanical Design of Piezoelectric Energy Harvesters: Generating Electricity from Human Walking provides the state-of-the-art, recent mechanical designs of piezoelectric energy harvesters based on piezoelectric stacks. The book discusses innovative mechanism designs for energy harvesting from multidimensional force excitation, such as human walking, which offers higher energy density. Coverage includes analytical modeling, optimal design, simulation study, prototype fabrication, and experimental investigation. Detailed examples of their analyses and implementations are provided. The book's authors provide a unique perspective on this field, primarily focusing on novel designs for PZT Energy harvesting in biomedical engineering as well as in integrated multi-stage force amplification frame. This book presents force-amplification compliant mechanism design and force direction-transmission mechanism design. It explores new mechanism design approaches using piezoelectric materials and permanent magnets. Readers can expect to learn how to design new mechanisms to realize multidimensional energy harvesting systems.
Carbon Capture and Storage in International Energy Policy and Law identifies the main contemporary regulatory requirements, challenges and opportunities involving CCS from a comparative and interdisciplinary perspective. It draws on the scholarship of renowned researchers across the fields of international energy law and policy to address CCS regulation and its impact on climate change, sustainable development, and related consequences for energy transition. In this vein, the book aims to address issues related to energy, energy justice and climate changes (including CCS technology). Contributors discuss the main challenges and advantages concerning international energy and the forms CCS may contribute to energy security, climate change, adaptation and mitigation of GHG emissions and sustainable development. In this light, the book discusses CCS as a bridge that integrates international energy, climate change and sustainable development.
Microsupercapacitors systematically guides the reader through the key materials, characterization techniques, performance factors and potential applications and benefits to society of this emerging electrical energy storage solution. The book reviews the technical challenges in scaling down supercapacitors, covering materials, performance, design and applications perspectives. Sections provide a fundamental understanding of microsupercapacitors and compare them to existing energy storage technologies. Final discussions consider the factors that impact performance, potential tactics to improve performance, barriers to implementation, emerging solutions to those barriers, and a future outlook. This book will be of particular interest to materials scientists and engineers working in academia, research and development.
Power systems are becoming increasingly complex as well as flexible, able to integrate distributed renewable generation, EV, and additional loads. This expanded and updated second edition covers the technologies needed to operate modern power grids. Initial chapters cover power system modelling, telegrapher equations, power flow analysis, discrete Fourier transformation and stochastic differential equations. Ensuing chapters deal with power system operation and control, power flow, real-time control and state estimation techniques for distribution systems as well as shipboard systems. The final chapters describe stability analysis of power systems and cover voltage stability, transient stability, time delays, and limit cycles. New content for the second edition includes four new chapters on recent modelling, control and stability analysis of power electronic converters and electric vehicles. This new edition is an essential guide to technologies for operating modern flexible power systems for PhD students, early-career researchers and practitioners in the field.
Nanogrids are small energy grids, powered by various generators often including photovoltaics. For example, a nanogrid might supply a village in a rural area and allow that village to trade its surplus energy. A picogrid is a still smaller energy grid. IRENA defines nanogrids as systems handling up to 5 kW of power while picogrids handle up to 1 kW. Nanogrids and picogrids can play roles in urban, suburban and rural areas, particularly in developing countries, and can help with decarbonising the energy systems and empowering citizens. Electric vehicles (EV) are poised to play important roles and need to be accounted for in emerging and future small grids. This book introduces the principles of nano- and picogrids, then goes on to provide a technical analysis covering connected resources, modelling and performance, power quality and protection. The use of nano- and picogrids in conjunction with EV, charger technologies, the IoT, cloud computing and data sharing is explored. Case studies of real-life projects help readers to understand and apply the concepts for their own projects. Nanogrids and Picogrids and their Integration with Electric Vehicles is a valuable resource for researchers involved with power systems, particularly those with an interest in power supply in rural areas, or anyone with a particular interest in nano- and microgrids. It is also of use to advanced students, and to engineers working in utilities.
This is an account of the author's investigation, on behalf of the Canadian government, into the life and ideas of the eccentric genius Nikola Tesla. This is a completely revised and redesigned edition, with a new introduction by the former head of the Tesla Museum, a new chapter and a selection of photographs of Tesla and his work in search of the holy grail of electricity - the transmission of power without loss. As a student in Prague in the 1870s, Tesla "saw" the electric induction motor and patented his discovery, -the first of many inventions whose plans seem to have come to him fully fledged. He worked for the Edison company in Paris before emigrating to the US and battling with Thomas Edison himself to ensure that alternating, rather than direct current, became the standard. He sold his patent in the induction motor for $1 million dollars to George Westinghouse, who used this system for the Niagara Falls Power Project. Moving to Colorado Springs, Tesla worked on resonance, building enormous oscillating towers in experiments which still intrigue today. In later life Tesla became a recluse, bombarding newspapers with eccentric claims, including energy transmissions to other planets. Though he died alone and virtually forgotten, rumours gradually grew that Tesla had made further remarkable discoveries. In an attempt to replicate his experiments, people still build Tesla towers and puzzle over the possible link with low-frequency broadcasts which can supposedly disrupt the weather and affect the human mind. |
![]() ![]() You may like...
Advanced Pulse-Width-Modulation: With…
Dong JIANG, Zewei Shen, …
Hardcover
R2,370
Discovery Miles 23 700
Hykie Berg: My Storie van Hoop
Hykie Berg, Marissa Coetzee
Paperback
Soft Commutation Isolated DC-DC…
Ivo Barbi, Fabiana Poettker
Hardcover
R3,906
Discovery Miles 39 060
|