![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Energy technology & engineering > Electrical engineering
Understanding the recent developments in renewable energy is crucial for a range of fields in today's society. As environmental awareness and the need for a more sustainable future continues to grow, the uses of renewable energy, particularly in areas such as smart grid, must be considered and studied thoroughly to be implemented successfully and move society toward a more sustainable future. Optimal Planning of Smart Grid With Renewable Energy Resources offers a detailed guide to the new problems and opportunities for sustainable growth in engineering by focusing on modeling diverse problems occurring in science and engineering as well as novel effective theoretical methods and robust optimization theories, which can be used to analyze and solve multiple types of problems. Covering topics such as electric drives and energy systems, this publication is ideal for researchers, academicians, industry professionals, engineers, scholars, instructors, and students.
The electric power industry is currently undergoing an unprecedented reform. The deregulation of electricity supply industry has introduced new opportunity for competition to reduce the cost and cut the price. It is a tremendous challenge for utilities to maintain an economical and reliable supply of electricity in such an environment. Faced by an increasingly complicated existence, power utilities need efficient tools and aids to ensure that electrical energy of the desired quality can be provided at the lowest cost. The overall objective, both for short-term and long-term operations, is then to find the best compromise between the requirements of security and economy. That is, effective tools are urgently required to solve highly constrained optimisation problems. In recent years, several major modem optimisation techniques have been applied to power systems. A large number of papers and reports have been published. In this respect, it is timely to edit a book on this topic with an aim to report the state of the art development internationally in this area.
The term "nonconventional machining" refers a group of processes that removes material by various methods involving thermal, electrical, chemical and mechanical energy. Nonconventional machining is required when workpieces are extremely hard, too flexible or have complex geometries. Most recent methods and applications are described by acknowledged experts in the field to provide a useful reference for academics, researchers and decision takers.
The book summarizes the main results of the the project ENABLE-S3 covering the following aspects: validation and verification technology bricks (collection and selection of test scenarios, test executions envionments incl. respective models, assessment of test results), evaluation of technology bricks in selected use cases and standardization and related initiatives. ENABLE-S3 is an industry-driven EU-project and aspires to substitute todays' cost-intensive verification and validation efforts by more advanced and efficient methods. In addition, the book includes articles about complementary international activities in order to highlight the global importance of the topic and to cover the wide range of aspects that needs to be covered at a global scale.
This book describes thermal plant simulation, that is, dynamic simulation of plants which produce, exchange and otherwise utilize heat as their working medium. Directed at chemical, mechanical and control engineers involved with operations, control and optimization and operator training, the book gives the mathematical formulation and use of simulation models of the equipment and systems typically found in these industries. The author has adopted a fundamental approach to the subject. The initial chapters provide an overview of simulation concepts and describe a suitable computer environment. Reviews of relevant numerical computation methods and fundamental thermodynamics are followed by a detailed examination of the basic conservation equations. The bulk of the book is concerned with development of specific simulation models. Care is taken to trace each model derivation path from the basic underlying physical equations, explaining simplifying and restrictive assumptions as they arise and relating the model coefficients to the physical dimensions and physical properties of the working materials. Numerous photographs of real equipment complement the text and most models are illustrated by numerical examples based on typical real plant operations.
This book covers the topic of vibration energy harvesting using piezoelectric materials. Piezoelectric materials are analyzed in the context of their electromechanical coupling, heterogeneity, microgeometry and interrelations between electromechanical properties. Piezoelectric ceramics and composites based on ferroelectrics are advanced materials that are suitable for harvesting mechanical energy from vibrations using inertial energy harvesting which relies on the resistance of a mass to acceleration and kinematic energy harvesting which couples the energy harvester to the relative movement of different parts of a source. In addition to piezoelectric materials, research efforts to develop optimization methods for complex piezoelectric energy harvesters are also reviewed. The book is important for specialists in the field of modern advanced materials and will stimulate new effective piezotechnical applications.
The book introduces an original and effective method for the analysis of peak-to-peak output current ripple amplitude in three-phase two-level inverters. It shows that the method can be extended to both multiphase inverters, with particular emphasis on five-phase and seven-phase inverters, and multilevel ones, with particular emphasis on three-level inverters, and provides, therefore, a comparison among different number of output phases and voltage levels. The work reported on here represents the first detailed analysis of the peak-to-peak output current ripple. It makes an important step toward future developments in the field of high-power generation, and in grid-connected and motor-load systems.
There is a growing number of applications that require fast-rotating machines; motivation for this thesis comes from a project in which downsized spindles for micro-machining have been researched. The thesis focuses on analysis and design of high-speed PM machines and uses a practical design of a high-speed spindle drive as a test case. Phenomena, both mechanical and electromagnetic, that take precedence in high-speed permanent magnet machines are identified and systematized. The thesis identifies inherent speed limits of permanent magnet machines and correlates those limits with the basic parameters of the machines. The analytical expression of the limiting quantities does not only impose solid constraints on the machine design, but also creates the way for design optimization leading to the maximum mechanical and/or electromagnetic utilization of the machine. The models and electric-drive concepts developed in the thesis are evaluated in a practical setup.
Li-Co-Mn-Ni oxides have been of extreme interest as potential positive electrode materials for next generation Li-ion batteries. Though many promising materials have been discovered and studied extensively, much debate remains in the literature about the structures of these materials. There is no consensus as to whether the lithium-rich layered materials are single-phase or form a layered-layered composite on the few nanometer length-scales. Much of this debate came about because no phase diagrams existed to describe these systems under the synthesis conditions used to make electrode materials. Detailed in this thesis are the complete Li-Co-Mn-O and Li-Mn-Ni-O phase diagrams generated by way of the combinatorial synthesis of mg-scale samples at over five hundred compositions characterized with X-ray diffraction. Selected bulk samples were used to confirm that the findings are relevant to synthesis conditions used commercially. The results help resolve a number of points of confusion and contradiction in the literature. Amongst other important findings, the compositions and synthesis conditions giving rise to layered-layered nano-composites are presented and electrochemical results are used to show how better electrode materials can be achieved by making samples in the single phase-layered regions.
The Chinese government set a target to reduce China s carbon intensity by 40%-45% in 2020 at its 2005 level. To achieve this target, the government has allocated targets to provinces, cities, and large enterprises, and selected five pilot provinces and eight cities for CO2 emission trading. Such emission trading process will involve decentralization, optimization, and negotiation. The prime objective of this book is to perform academic research on simulating the negotiation process. Through this research, a methodological framework and its implementation are set up to analyze, model and facilitate the process of negotiation among central government and individual energy producers under environmental, economical and social constraints. NEGOTIATION IN DECENTRALIZATION: CASE STUDY OF CHINA'S CARBON TRADING IN THE POWER SECTOR discusses research carried out on negotiation issues in China regarding Chinese power sector reform over the past 30 years. Results show that conflicts exist between power groups and the national government, and that the most current negotiation topics in China's power industry are demand and supply management, capital investment, energy prices, and CO2 emission mitigations. NEGOTIATION IN DECENTRALIZATION: CASE STUDY OF CHINA'S CARBON TRADING IN THE POWER SECTOR is written for government policy makers, energy and environment industry investors, energy program/project managers, environment conservation specialists, university professors, researchers, and graduate students. It aims to provide a methodology and a tool that can resolve difficult negotiation issues and change a loss-loss situation to a win-win situation for key players in a decentralized system, including government policymakers, energy producers, and environment conservationists. "
This book is not only an essential read for every professional
working with antique radio and gramophone equipment, but also
dealers, collectors and valve technology enthusiasts the world
over.
This volume contains selected presentations of the "EUROMECH Colloquium 412 on LES of complex transitional and turbulent flows" held at the Munich University of Technology from 4 to 6 October 2000. The articles focus on new developments in the field of large-eddy simulation of complex flows and are related to the topics: modelling and analysis of subgrid scales, numerical issues in LES cartesian grids for complex geometries, curvilinear and non-structured grids for complex geometries. DES and RANS-LES coupling, aircraft wake vortices, combustion and magnetohydrodynamics. Progress has been made not only in understanding and modelling the dynamics of unresolved scales, but also in designing means that prevent the contamination of LES predictions by discretization errors. Progress is reported as well on the use of cartesian and curvilinear coordinates to compute flow in and around complex geometries and in the field of LES with unstructured grids. A chapter is dedicated to the detached-eddy simulation technique and its recent achievements and to the promising technique of coupling RANS and LES solutions in order to push the resolution-based Reynolds number limit of wall-resolving LES to higher values. Complexity due to physical mechanisms links the last two chapters. It is shown that LES constitutes the tool to analyse the physics of aircraft wake vortices during landing and takeoff. Its thorough understanding is a prerequisite for reliable predictions of the distance between consecutive landing airplanes. Subgrid combustion modelling for LES of single and two-phase reacting flows is demonstrated to have the potential to deal with finite-rate kinetics in high Reynolds numberflows of full-scale gas turbine engines. Fluctuating magnetic fields are more reliably predicted by LES when tensor-diffusivity rather than gradient-diffusion models are used. An encouraging result in the context of turbulence control by magnetic fields.
Russia's place in the world as a powerful regional actor can no longer be denied; the question that remains concerns what this means in terms of foreign policy and domestic stability for the actors involved in the situation, as Russia comes to grips with its newfound sources of might.
In the last decade, signi?cant changes have occurred in the ?eld of vehicle motion planning, and for UAVs in particular. UAV motion planning is especially dif?cult due to several complexities not considered by earlier planning strategies: the - creased importance of differential constraints, atmospheric turbulence which makes it impossible to follow a pre-computed plan precisely, uncertainty in the vehicle state, and limited knowledge about the environment due to limited sensor capabilities. These differences have motivated the increased use of feedback and other control engineering techniques for motion planning. The lack of exact algorithms for these problems and dif?culty inherent in characterizing approximation algorithms makes it impractical to determine algorithm time complexity, completeness, and even soundness. This gap has not yet been addressed by statistical characterization of experimental performance of algorithms and benchmarking. Because of this overall lack of knowledge, it is dif?cult to design a guidance system, let alone choose the algorithm. Throughout this paper we keep in mind some of the general characteristics and requirements pertaining to UAVs. A UAV is typically modeled as having velocity and acceleration constraints (and potentially the higher-order differential constraints associated with the equations of motion), and the objective is to guide the vehicle towards a goal through an obstacle ?eld. A UAV guidance problem is typically characterized by a three-dimensional problem space, limited information about the environment, on-board sensors with limited range, speed and acceleration constraints, and uncertainty in vehicle state and sensor data.
Fibre-to-the-Home networks constitute a fundamental telecom segment with the required potential to match the huge capacity of transport networks with the new user communication demands. Huge investments in access network infrastructure are expected for the next decade, with many initiatives already launched around the globe recently, driven by the new broadband service demands and the necessity by operators to deploy a future-proof infrastructure in the field. Dense FTTH Passive Optical Networks (PONs) is a cost-efficient way to build fibre access, and international standards (G/E-PON) have been already launched, leading to new set of telecom products for mass deployment. However, these systems only make use of less than 1% of the optical bandwidth; thus, relevant research is taking place to maximize the capacity of these systems, with the latest opto-electronic technologies, demonstrating that the huge bandwidth available through the fibre access can be exploited in a cost-efficient and reliable manner. Next-Generation FTTH Passive Optical Networks gathers and analyzes the most relevant techniques developed recently on technologies for the next generation FTTH networks, trying to answer the question: what's after G/E-PONs?
Crompton's Battery Reference Book has become the standard reference
source for a wide range of professionals and students involved in
designing, manufacturing, and specifying products and systems that
use batteries.
The intention of this book is to provide an impression of all aspects of p- tovoltaics (PV). It is not just about physics and technology or systems, but it looks beyond that at the entire environment in which PV is embedded. The ?rst chapter is intended as an introduction to the subject. It can also be considered an executive summary. Chapters 2-4 describe very brie?y the basic physics and technology of the solar cell. The silicon cell is the vehicle for this description because it is the best understood solar cell and also has the greatest practical importance. A reader who is not interested in the ph- ical details of the solar cell can skip Chap.2 and still understand the rest of the book. In general, it was the intention of the authors to keep the book at a level that does not require too much previous knowledge of photovoltaics. Chapter5isdevotedtoothermaterialsandnewconceptspresentlyunder- velopment or consideration. It intends to provide an impression of the many possibilities that exist for the conversion of solar radiation into electricity by solid state devices. These new concepts will keep researchers occupied for decades to come. Chapter 6 gives an introduction to cell and module techn- ogy and also informs the reader about the environmental compatibility and recycling of modules. The following chapters are devoted to practical applications. Chapters 7 and 8 introduce systems technology for di?erent applications. The envir- mental impact of PV systems and their reliability is the subject of Chap.9.
Gaining public attention due, in part, to their potential application as energy storage devices in cars, Lithium-ion batteries have encountered widespread demand, however, the understanding of lithium-ion technology has often lagged behind production. This book defines the most commonly encountered challenges from the perspective of a high-end lithium-ion manufacturer with two decades of experience with lithium-ion batteries and over six decades of experience with batteries of other chemistries. Authors with years of experience in the applied science and engineering of lithium-ion batteries gather to share their view on where lithium-ion technology stands now, what are the main challenges, and their possible solutions. The book contains real-life examples of how a subtle change in cell components can have a considerable effect on cell's performance. Examples are supported with approachable basic science commentaries. Providing a unique combination of practical know-how with an in-depth perspective, this book will appeal to graduate students, young faculty members, or others interested in the current research and development trends in lithium-ion technology.
This book provides different engineering, management, economic solutions and methodologies regarding sustainable aviation, giving readers a great sense of how sustainable aviation works at the "systems" level. The aviation industry is one of the fastest growing in the world and can make a positive contribution to sustainability. This book presents environmental policies and their application to the aviation industry and evaluates solutions provided to address pollution. Chapters discuss novel technologies that the aviation industry can apply to reduce its environmental impact and become more energy efficient.
Multicore Processors and Systems provides a comprehensive overview of emerging multicore processors and systems. It covers technology trends affecting multicores, multicore architecture innovations, multicore software innovations, and case studies of state-of-the-art commercial multicore systems. A cross-cutting theme of the book is the challenges associated with scaling up multicore systems to hundreds of cores. The book provides an overview of significant developments in the architectures for multicore processors and systems. It includes chapters on fundamental requirements for multicore systems, including processing, memory systems, and interconnect. It also includes several case studies on commercial multicore systems that have recently been developed and deployed across multiple application domains. The architecture chapters focus on innovative multicore execution models as well as infrastructure for multicores, including memory systems and on-chip interconnections. The case studies examine multicore implementations across different application domains, including general purpose, server, media/broadband, network processing, and signal processing. Multicore Processors and Systems is the first book that focuses solely on multicore processors and systems, and in particular on the unique technology implications, architectures, and implementations. The book has contributing authors that are from both the academic and industrial communities.
This book presents innovative research and its applications in the development of transportation infrastructure, and discusses the latest trends, challenges and unsolved problems in the field of transport technology. The book also presents a range of solutions to problems faced by the rapidly growing economies of the developing world. Core challenges confronting policymakers in the field of transport technology include traffic congestion, air pollution, traffic fatalities and injuries, and petroleum dependence. At the same time, the increased use of hybrid and electric vehicles is changing consumer needs and behaviors. The solutions discussed in this book will encourage and inspire researchers, industry professionals and policymakers alike to put these methods into practice. |
You may like...
Smart Sensors and MEMS - Intelligent…
S. Nihtianov, A. Luque
Paperback
Ultra-Supercritical Coal Power Plants…
Dongke Zhang Ftse
Hardcover
Practical Grounding, Bonding, Shielding…
G. Vijayaraghavan, Mark Brown, …
Paperback
R1,427
Discovery Miles 14 270
Power Electronic Control in Electrical…
Enrique Acha, Vassilios Agelidis, …
Hardcover
R3,103
Discovery Miles 31 030
Uncertainties in Modern Power Systems
Ahmed F. Zobaa, Shady H.E Abdel Aleem
Paperback
R3,339
Discovery Miles 33 390
Power System Analysis and Design, SI…
J. Duncan Glover, Mulukutla Sarma, …
Paperback
|