![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Energy technology & engineering > Electrical engineering
High-Level Power Analysis and Optimization presents a comprehensive description of power analysis and optimization techniques at the higher (architecture and behavior) levels of the design hierarchy, which are often the levels that yield the most power savings. This book describes power estimation and optimization techniques for use during high-level (behavioral synthesis), as well as for designs expressed at the register-transfer or architecture level. High-Level Power Analysis and Optimization surveys the state-of-the-art research on the following topics: power estimation/macromodeling techniques for architecture-level designs, high-level power management techniques, and high-level synthesis optimizations for low power. High-Level Power Analysis and Optimization will be very useful reading for students, researchers, designers, design methodology developers, and EDA tool developers who are interested in low-power VLSI design or high-level design methodologies.
This book is about large-scale electronic circuits design driven by nanotechnology, where nanotechnology is broadly defined as building circuits using nanoscale devices that are either implemented with nanomaterials (e.g., nanotubes or nanowires) or following an unconventional method (e.g., FinFET or III/V compound-based devices). These nanoscale devices have significant potential to revolutionize the fabrication and integration of electronic systems and scale beyond the perceived scaling limitations of traditional CMOS. While innovations in nanotechnology originate at the individual device level, realizing the true impact of electronic systems demands that these device-level capabilities be translated into system-level benefits. This is the first book to focus on nanoscale circuits and their design issues, bridging the existing gap between nanodevice research and nanosystem design.
This book focuses on the framework and implementation of energy integration systems with energy and smart-control technologies. It describes in detail We-Energy, a novel energy interaction mode based on a cyber-physical-economy-energy model, which can be adopted to solve the problem of energy supply and utilization. It then analyzes the key devices and technologies for developing the Energy Internet, such as converters, energy-conversion devices, system-level connection devices, optimization control strategies, cyber-physical system security, energy-system stability, communication technologies' operating modes and distributed optimization algorithms, to enable readers to gain a comprehensive understanding of the topic. Lastly, it offers an outlook on the development of the Energy Internet, providing a reference for cross-integration between different disciplines. The book is an indispensable resource for power enterprises, manufacturers in the power-supply industry, and researchers in the field of Energy Internet application. It is also useful for university and college teachers and students seeking to deepen their understanding of the Energy Internet, as well as for readers interested in the Energy Internet correlation techniques.
This book examines the characteristics of Proton Exchange Membrane (PEM) Fuel Cells with a focus on deriving realistic finite element models. The book also explains in detail how to set up measuring systems, data analysis, and PEM Fuel Cells' static and dynamic characteristics. Covered in detail are design and operation principles such as polarization phenomenon, thermodynamic analysis, and overall voltage; failure modes and mechanisms such as permanent faults, membrane degradation, and water management; and modelling and numerical simulation including semi-empirical, one-dimensional, two-dimensional, and three-dimensional models. It is appropriate for graduate students, researchers, and engineers who work with the design and reliability of hydrogen fuel cells, in particular proton exchange membrane fuel cells.
The general concept of information is here, for the first time, defined mathematically by adding one single axiom to the probability theory. This Mathematical Theory of Information is explored in fourteen chapters: 1. Information can be measured in different units, in anything from bits to dollars. We will here argue that any measure is acceptable if it does not violate the Law of Diminishing Information. This law is supported by two independent arguments: one derived from the Bar-Hillel ideal receiver, the other is based on Shannon's noisy channel. The entropy in the 'classical information theory' is one of the measures conforming to the Law of Diminishing Information, but it has, however, properties such as being symmetric, which makes it unsuitable for some applications. The measure reliability is found to be a universal information measure. 2. For discrete and finite signals, the Law of Diminishing Information is defined mathematically, using probability theory and matrix algebra. 3. The Law of Diminishing Information is used as an axiom to derive essential properties of information. Byron's law: there is more information in a lie than in gibberish. Preservation: no information is lost in a reversible channel. Etc. The Mathematical Theory of Information supports colligation, i. e. the property to bind facts together making 'two plus two greater than four'. Colligation is a must when the information carries knowledge, or is a base for decisions. In such cases, reliability is always a useful information measure. Entropy does not allow colligation.
This book represents a thoroughly comprehensive treatment of computational intelligence from an electrical power system engineer's perspective. Thorough, well-organised and up-to-date, it examines in some detail all the important aspects of this very exciting and rapidly emerging technology, including: expert systems, fuzzy logic, artificial neural networks, genetic algorithms and hybrid systems. Written in a concise and flowing manner, by experts in the area of electrical power systems who have had many years of experience in the application of computational intelligence for solving many complex and onerous power system problems, this book is ideal for professional engineers and postgraduate students entering this exciting field. This book would also provide a good foundation for senior undergraduate students entering into their final year of study.
The book describes a method for modeling systems architecture, particularly of telecom networks and systems, although a large part can be used in a wider context. The method is called Sysnet Modeling and is based on a new modeling language, AML (Abstract systems Modeling Language), which is also described in the book. By applying Sysnet Modeling and AML, a formal model of the system is created. That model can be used for systems analysis as well as for communicating system knowledge to a broader audience of engineers in development projects. Inherent in sysnet modeling is the potential for considerable reduction in time spent on system implementation through the possibilities for code- and test-case generation.
The theory of finite fields is of central importance in engineering and computer science, because of its applications to error-correcting codes, cryptography, spread-spectrum communications, and digital signal processing. Though not inherently difficult, this subject is almost never taught in depth in mathematics courses, (and even when it is the emphasis is rarely on the practical aspect). Indeed, most students get a brief and superficial survey which is crammed into a course on error-correcting codes. It is the object of this text to remedy this situation by presenting a thorough introduction to the subject which is completely sound mathematically, yet emphasizes those aspects of the subject which have proved to be the most important for applications. This book is unique in several respects. Throughout, the emphasis is on fields of characteristic 2, the fields on which almost all applications are based. The importance of Euclid's algorithm is stressed early and often. Berlekamp's polynomial factoring algorithm is given a complete explanation. The book contains the first treatment of Berlekamp's 1982 bit-serial multiplication circuits, and concludes with a thorough discussion of the theory of m-sequences, which are widely used in communications systems of many kinds.
In racent years the LSI technology has witnessed a revoluti onary development, and allowed substantial reductions in the size and cost of digital logic circuitry. Computer system building blocks have progressed from the level of discrete components to the level of complex ICs involving many logic circuits on a single "chip." The invention and wide applica tions of microprocessors have changed the philosophy of the signal processing, measurement and control engineering fields. The microprocessor-based digital signal processing systems and controllers have replaced the conventional ones based on standard analog and digital computing equipment. The first microprocessors and "on-chip" computers have appeared towards the end of 71 beginning 72. Their evolution since then and the number of applications, in which they have been utilized, have both been extremely spectacular. New system concepts and hardware/software tools are steadily under development to sup port the microprocessor in its multiple and complex tasks. The goal of this book is to provide a cohesive and well-balan ced set of contributions dealing with important aspects and applications of microprocessors to signal processing, measu rement and system control. The majority of contributions in clude sufficient review material and present rather complete treatments of the respective topics."
"Applications of Pulse-Coupled Neural Networks" explores the fields of image processing, including image filtering, image segmentation, image fusion, image coding, image retrieval, and biometric recognition, and the role of pulse-coupled neural networks in these fields. This book is intended for researchers and graduate students in artificial intelligence, pattern recognition, electronic engineering, and computer science. Prof. Yide Ma conducts research on intelligent information processing, biomedical image processing, and embedded system development at the School of Information Science and Engineering, Lanzhou University, China.
In response to the growing importance of power system security and reliability, "Transmission Grid Security" proposes a systematic and probabilistic approach for transmission grid security analysis. The analysis presented uses probabilistic safety assessment (PSA) and takes into account the power system dynamics after severe faults. In the method shown in this book the power system states (stable, not stable, system breakdown, etc.) are connected with the substation reliability model. In this way it is possible to: estimate the system-wide consequences of grid faults; identify a chain of events that might lead to blackout; and rank the importance of different substation components at the system level. "Transmission Grid Security" also presents the main features and basic mathematics of PSA. It provides the reader with up-to-date knowledge of the regulatory issues affecting the security of transmission grids in Europe. "Transmission Grid Security" gives a practical method for the security analysis of transmission grids, making it a valuable text for engineers and system operators, as well as postgraduate students. It includes basic information and detailed modules for creating a reliability model that takes into account all the basic operations and components needed after grid faults.
Second-Generation High-Temperature Superconducting Coils and Their Applications for Energy Storage addresses the practical electric power applications of high-temperature superconductors. It validates the concept of a prototype energy storage system using newly available 2G HTS conductors by investigating the process of building a complete system from the initial design to the final experiment. It begins with a clear introduction of the related background and then presents a comprehensive design of a superconducting energy storage system that can store maximum energy using a limited length of superconductors. The author has created a modeling environment for analysis of the system and also presents experimental results that are highly consistent with his theoretical calculations.
The extended and revised second edition of this successful monograph presents advanced modeling, analysis and control techniques of Flexible AC Transmission Systems (FACTS). The book covers comprehensively a range of power-system control problems: from steady-state voltage and power flow control, to voltage and reactive power control, to voltage stability control, to small signal stability control using FACTS controllers. In the six years since the first edition of the book has been published research on the FACTS has continued to flourish while renewable energy has developed into a mature and booming global green business. The second edition reflects the new developments in converter configuration, smart grid technologies, super power grid developments worldwide, new approaches for FACTS control design, new controllers for distribution system control, and power electronic controllers in wind generation operation and control. The latest trends of VSC-HVDC with multilevel architecture have been included and four completely new chapters have been added devoted to Multi-Agent Systems for Coordinated Control of FACTS-devices, Power System Stability Control using FACTS with Multiple Operating Points, Control of a Looping Device in a Distribution System, and Power Electronic Control for Wind Generation. "
This book introduces readers to two major sustainable applications of linear synchronous machines: wave energy conversion and magnetic levitation train technology. To do so, it begins with a state-of-the-art review of linear machines, covering induction and synchronous topologies and their applications, with a particular focus on sustainable applications. This is followed by an analysis of the electromagnetic modeling of linear synchronous machines, the goal being to investigate their main features, especially their force production capabilities.
Numbers, Information and Complexity is a collection of about 50 articles in honour of Rudolf Ahlswede. His main areas of research are represented in the three sections, `Numbers and Combinations', `Information Theory (Channels and Networks, Combinatorial and Algebraic Coding, Cryptology, with the related fields Data Compression, Entropy Theory, Symbolic Dynamics, Probability and Statistics)', and `Complexity'. Special attention was paid to the interplay between the fields. Surveys on topics of current interest are included as well as new research results. The book features surveys on Combinatorics about topics such as intersection theorems, which are not yet covered in textbooks, several contributions by leading experts in data compression, and relations to Natural Sciences are discussed.
The role of energy in the modern world goes beyond mere technology and economics to influence welfare, environment, life quality and, broadly, civilisation. Since the industrial revolution, energy conversion technology has been at the forefront of innovation required to satisfy the needs of mankind. This technology more than others has always been very dependent on the performance of the materials used; especially over the last two decades during which efficiency and environmental concerns have become challenging objectives. In this context the European Commission has developed significant collaborative programmes in Europe within the COST framework, to enhance the state of the art in this technology. The Li ge Conferences pursue the mission to report on the achievements of these programmes in the light of progress made elsewhere. The first four conferences in this series were held in 1978, 1982, 1986 and 1990, and provided the opportunity to present and review the work of the European Materials Collaborative Programmes COST-50 (gas turbines), COST-505 (steam turbines) and COST- 501 (energy conversion from fossil fuels). The proceedings of these conferences were published by Applied Science Publishers (1978) and by D. ReideIlKluwer Publishing Company (1982, 1986 and 1990). While the first two Conferences have dealt essentially with high temperature alloys for gas turbines (COST 50), the third and fourth Conferences held in 1986 and 1990 were concerned with a broader range of topics, including the work of the third round of COST-50 (1972-1983), that of COST-50l, which was initiated in 1981 and COST 505 (1983-1990).
"Electrochemical Impedance Spectroscopy in PEM Fuel Cells" discusses one of the most powerful and useful diagnostic tools for various aspects of the study of fuel cells: electrochemical impedance spectroscopy (EIS). This comprehensive reference on EIS fundamentals and applications in fuel cells contains information about basic principles, measurements, and fuel cell applications of the EIS technique. Many illustrated examples are provided to ensure maximum clarity and observability of the spectra. "Electrochemical Impedance Spectroscopy in PEM Fuel Cells" will enable readers to explore the frontiers of EIS technology in PEM fuel cell research and other electrochemical systems. As well as being a useful text for electrochemists, it can also help researchers who are unfamiliar with EIS to learn the technique quickly and to use it correctly in their fuel cell research. Managers or entrepreneurs may also find this book a useful guide to accessing the challenges and opportunities in fuel cell technology.
Battery System Modeling provides advances on the modeling of lithium-ion batteries. Offering step-by-step explanations, the book systematically guides the reader through the modeling of state of charge estimation, energy prediction, power evaluation, health estimation, and active control strategies. Using applications alongside practical case studies, each chapter shows the reader how to use the modeling tools provided. Moreover, the chemistry and characteristics are described in detail, with algorithms provided in every chapter. Providing a technical reference on the design and application of Li-ion battery management systems, this book is an ideal reference for researchers involved in batteries and energy storage. Moreover, the step-by-step guidance and comprehensive introduction to the topic makes it accessible to audiences of all levels, from experienced engineers to graduates.
The Core Test Wrapper Handbook: Rationale and Application of IEEE Std. 1500tm provides insight into the rules and recommendations of IEEE Std. 1500. This book focuses on practical design considerations inherent to the application of IEEE Std. 1500 by discussing design choices and other decisions relevant to this IEEE standard. The authors provide background information about some of the choices and decisions made throughout the design of IEEE Std. 1500.
In order to fulfill the tremendous worldwide demand for electrification, power line professionals will need to adopt rapid, reliable and sustainable solutions. For example, in a fast-developing country like India, which had the largest population without electricity in 2014 and 1.34 billion inhabitants in 2017, the demand for electrification is immense. In recent years, a new program facilitated 0.73 million new household connections per month and almost 19,000 villages per year. Wide-spread experience in geographical, geological, social and economic diversity leaves no doubt that overhead power lines (OHL) are the only way to provide electricity to communities where underground lines are technically unfeasible or too expensive. This book presents the technology and recent research into OHL in a concise and systematic way. After brief introductory sections, chapters cover line support, foundation and mechanical sag, corona discharge, overhead line insulators and conductors, earthing and earth wire, lightning and surge protection, insulation and coordination, route selection, commissioning, operation and maintenance. This book is a must-read for researchers and experts involved with utilities and particularly for anyone associated with the installation, electrification, operation and maintenance of overhead lines in transmission and distribution networks.
This thesis describes a new approach to the construction of "solar cells." Following nature's example, this approach has the goal to find a biomimetic self-assembling dye, whose aggregates can mimic the natural light-harvesting system of special photosynthetic active bacteria. The thesis investigates methods to control the self-assembly such that suitable dye aggregates are formed with high internal order and size-confinement. The dye aggregates can be implemented into a new type of "solar cells," designed to combine the advantages of "hybrid solar cells" and "solid-state dye-sensitized solar cells" (ss-DSSCs): dye aggregate solar cells (DASCs). This book describes the construction and first tests of a prototype for DASCs on the basis of the investigated dye aggregates. The described approach has the advantage that it will enable to build up a light-harvesting system fully synthetically in large scale in order to realize low-cost, light-weight and environmentally friendly solar cells - a worthwhile goal towards the exploitation of clean energy from sunlight.
New directives in the European Union forced the national governments to release new laws on the collection and recycling of electronic waste. Producers of electrical/electronic equipment are now required to fulfill several tasks on an administrational level, such as registration and regular declarations, as well as ensure take back and recycling operationally. The national laws and requirements strongly differ from country to country and created a lot of confusion in the past. In this book, consultants from 26 EU member states give a clear and structured recipe how this complicated procedure can be done in the corresponding country. This makes the book being an essential tool for the electrics industry, in particular for international companies.
This edited collection opens up new intellectual territories and articulates the ways in which academics are theorising and practicing new forms of research in 'wild' contexts. Many researchers are choosing to leave the familiarity of their laboratory-based settings in order to pursue in-situ studies 'in the wild' that can help them to better understand the implications of their work in real-world settings. This has naturally led to ethical, philosophical and practical reappraisals with regard to the taken for granted lab-based modus operandi of scientific, cultural and design-based ways of working. This evolving movement has led to a series of critical debates opening up around the nature of research in the wild, but up until now these debates have not been drawn together in a coherent way that could be useful in an academic context. The book brings together applied, methodological and theoretical perspectives relating to this subject area, and provides a platform and a source of reference material for researchers, students and academics to base their work on. Cutting across multiple disciplines relating to philosophy, sociology, ethnography, design, human-computer interaction, science, history and critical theory, this timely collection appeals to a broad range of academics in varying fields of research.
Automatic learning is a complex, multidisciplinary field of research and development, involving theoretical and applied methods from statistics, computer science, artificial intelligence, biology and psychology. Its applications to engineering problems, such as those encountered in electrical power systems, are therefore challenging, while extremely promising. More and more data have become available, collected from the field by systematic archiving, or generated through computer-based simulation. To handle this explosion of data, automatic learning can be used to provide systematic approaches, without which the increasing data amounts and computer power would be of little use. Automatic Learning Techniques in Power Systems is dedicated to the practical application of automatic learning to power systems. Power systems to which automatic learning can be applied are screened and the complementary aspects of automatic learning, with respect to analytical methods and numerical simulation, are investigated. This book presents a representative subset of automatic learning methods - basic and more sophisticated ones - available from statistics (both classical and modern), and from artificial intelligence (both hard and soft computing). The text also discusses appropriate methodologies for combining these methods to make the best use of available data in the context of real-life problems. Automatic Learning Techniques in Power Systems is a useful reference source for professionals and researchers developing automatic learning systems in the electrical power field.
Transient Stability of Power Systems is a monograph devoted to a hybrid-direct temporal method called SIME (for Single Machine Equivalent). SIME processes temporal information about the multimachine system dynamics to assess and control any type of transient instabilities under any type and model of power systems. Two approaches may be distinguished depending upon the source of information used: Preventative SIME' which relies on a time-domain program to simulate anticipated contingencies, and Emergency SIME' which uses real-time measurements. Preventative SIME mainly comprises two techniques: contingency filtering, ranking, and assessment; and (simultaneous) stabilization of harmful contingencies. The resulting preventative transient stability assessment and control (TSA&C) software can be used in all application contexts of transient stability studies. In a control center, for instance, its computational performances enable it to cope with very stringent requirements of real-time operation. Besides, interfacing SIME with an OPF algorithm allows combining transient stability constraints with specifics of the liberalized electricity market. Emergency SIME is a novel closed-loop control technique which contains the transient instabilities caused by contingencies' actual occurrence. It relies on real-time measurements to predict (the size of) instability and, accordingly, to design and trigger control actions able to impede system loss of synchronism. Emergency SIME is particularly suitable for protecting important generation sites and can complement preventative SIME. Both approaches rely on the same principles and basic software which yields a comprehensive and unified approach toTSA&C. The design of near optimal control techniques is a major asset of this software. This book provides extensive illustrations on a variety of power systems ranging from a simple 3-machine test system to real-world power systems comprising up to 627 generators and 4112 busses. Transient Stability of Power Systems will be especially helpful to researchers, utility engineers, and software designers and developers who are developing various types of transient stability software packages. |
You may like...
Sacred Sexuality - The Perfumed Garden…
Muhammad Ibn Muhammad Al-Nafzawi
Hardcover
R775
Discovery Miles 7 750
|