Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Energy technology & engineering > Electrical engineering
Digital Transmission Systems, Third Edition, is a comprehensive
overview of the theory and practices of digital transmission
systems used in digital communication. This new edition has been
completely updated to include the latest technologies and newest
techniques in the transmission of digitized information as well as
coverage of digital transmission design, implementation and
testing.
TiO2 Nanotube Arrays: Synthesis, Properties, and Applications is the first book to provide an overview of this rapidly growing field. Vertically oriented, highly ordered TiO2 nanotube arrays are unique and easily fabricated materials with an architecture that demonstrates remarkable charge transfer as well as photocatalytic properties. This volume includes an introduction to TiO2 nanotube arrays, as well as a description of the material properties and distillation of the current research. Applications considered include gas sensing, heterojunction solar cells, water photoelectrolysis, photocatalytic CO2 reduction, as well as several biomedical applications. Written by leading researchers in the field, TiO2 Nanotube Arrays: Synthesis, Properties, and Applications is a valuable reference for chemists, materials scientists and engineers involved with renewable energy sources, biomedical engineering, and catalysis, to cite but a few examples.
This book gathers selected research papers presented at the International Conference on Power, Control and Communication Infrastructure 2019 (ICPCCI 2019), organized by the Institute of Infrastructure, Technology, Research and Management (IITRAM), Ahmedabad, Gujarat, India, on July 4-5, 2019. It presents the latest advances, trends and challenges in control system technologies and infrastructures. The book addresses a range of solutions to the problems faced by engineers and researchers to design and develop controllers for emerging areas like smart grid, integration of renewable energy, automated highway systems, haptics, unmanned aerial vehicles, sensor networks, robotics, formation control and many more. The solutions discussed in this book encourage and inspire researchers, industry professionals and policymakers to put these methods into practice.
This book is a collection of best selected high-quality research papers presented at the International Conference on Advances in Energy Management (ICAEM 2019) organized by the Department of Electrical Engineering, Jodhpur Institute of Engineering & Technology (JIET), Jodhpur, India, during 20-21 December 2019. The book discusses intelligent energy management technologies which are cost effective compared to the high cost of fossil fuels. This book also explains why these systems have beneficial impact on environmental, economic and political issues of the world. The book is immensely useful for research scholars, academicians, R&D institutions, practicing engineers and managers from industry.
This book covers the topic of vibration energy harvesting using piezoelectric materials. Piezoelectric materials are analyzed in the context of their electromechanical coupling, heterogeneity, microgeometry and interrelations between electromechanical properties. Piezoelectric ceramics and composites based on ferroelectrics are advanced materials that are suitable for harvesting mechanical energy from vibrations using inertial energy harvesting which relies on the resistance of a mass to acceleration and kinematic energy harvesting which couples the energy harvester to the relative movement of different parts of a source. In addition to piezoelectric materials, research efforts to develop optimization methods for complex piezoelectric energy harvesters are also reviewed. The book is important for specialists in the field of modern advanced materials and will stimulate new effective piezotechnical applications.
This book is open access under a CC BY 4.0 license. This volume presents an Empirical Model of Global Climate developed by the authors and uses that model to show that global warming will likely remain below 2C, relative to preindustrial, throughout this century provided: a) both the unconditional and conditional Paris INDC commitments are followed; b) the emission reductions needed to achieve the Paris INDCs are carried forward to 2060 and beyond. The first section of the book provides a short overview of Earth's climate system, describing and contrasting climatic changes throughout the planet's history and anthropogenic changes post-Industrial Revolution. The second section describes the climate model developed by the authors (Canty et al., Atmospheric Chemistry and Physics, 2013) and contrasts the model with climate models used in the Intergovernmental Panel on Climate Change (IPCC) 2013 Report. Chapter 3 examines both the unconditional (i.e., firm commitments) and conditional Paris INDCs (commitments contingent on financial flow and/or technology transfer) through the lens of their climate model and concludes that if all of the Paris INDCs are followed, then they are indeed a beacon of hope for Earth's climate. The fourth part of the book offers a perspective of energy needs and subsequent emissions reductions required to meet the Paris temperature goals, illuminating challenges faced both in the developing world and the developed world. Throughout the book, easy-to-understand charts and graphics illustrate concepts. The scientific basis of Chapters 2 and 3 was first presented in a keynote session of the 96th Annual Meeting of the American Meteorological Society in January, 2016.
The Chinese government set a target to reduce China s carbon intensity by 40%-45% in 2020 at its 2005 level. To achieve this target, the government has allocated targets to provinces, cities, and large enterprises, and selected five pilot provinces and eight cities for CO2 emission trading. Such emission trading process will involve decentralization, optimization, and negotiation. The prime objective of this book is to perform academic research on simulating the negotiation process. Through this research, a methodological framework and its implementation are set up to analyze, model and facilitate the process of negotiation among central government and individual energy producers under environmental, economical and social constraints. NEGOTIATION IN DECENTRALIZATION: CASE STUDY OF CHINA'S CARBON TRADING IN THE POWER SECTOR discusses research carried out on negotiation issues in China regarding Chinese power sector reform over the past 30 years. Results show that conflicts exist between power groups and the national government, and that the most current negotiation topics in China's power industry are demand and supply management, capital investment, energy prices, and CO2 emission mitigations. NEGOTIATION IN DECENTRALIZATION: CASE STUDY OF CHINA'S CARBON TRADING IN THE POWER SECTOR is written for government policy makers, energy and environment industry investors, energy program/project managers, environment conservation specialists, university professors, researchers, and graduate students. It aims to provide a methodology and a tool that can resolve difficult negotiation issues and change a loss-loss situation to a win-win situation for key players in a decentralized system, including government policymakers, energy producers, and environment conservationists. "
This book introduces readers to essential technology assessment and forecasting tools, demonstrating their use on the basis of multiple cases. As organizations in the high-tech industry need to be able to assess emerging technologies, the book presents cases in which formal decision-making models are developed, providing a framework for decision-making in the context of technology acquisition and development. Applications of different technology forecasting tools are also discussed for a range of technologies and sectors, providing a guide to keep R&D organizations abreast of technological trends that affect their business. As such, the book offers a valuable the theoretical and practical reference guide for R&D managers responsible for emerging and future technologies.
The only pocket guide to the UK building regulations on the market Succinct, portable, reliable guide to UK Building regulations Essential for anyone involved in building works or renovations in the UK
This monograph systematically presents the fundamentals of theoretical and experimental research into the most important physical characteristics of porous structures. Non-standard behavior of certain physical parameters, such as the breakdown of the electric field of porous substances, is described. The method of calculation of the thermal conductivity coefficient of porous dielectrics, based on the non-equilibrium principle, is illustrated in detail. The present approach may be applied to the investigation of the properties of "disparate" substances such as cellulose matrices, composites, and fibrous structures. The book is intended for physicists, physical chemists and materials scientists at research and postgraduate and undergraduate levels. It may also be helpful for engineers and technical workers in the applied sciences.
Li-Co-Mn-Ni oxides have been of extreme interest as potential positive electrode materials for next generation Li-ion batteries. Though many promising materials have been discovered and studied extensively, much debate remains in the literature about the structures of these materials. There is no consensus as to whether the lithium-rich layered materials are single-phase or form a layered-layered composite on the few nanometer length-scales. Much of this debate came about because no phase diagrams existed to describe these systems under the synthesis conditions used to make electrode materials. Detailed in this thesis are the complete Li-Co-Mn-O and Li-Mn-Ni-O phase diagrams generated by way of the combinatorial synthesis of mg-scale samples at over five hundred compositions characterized with X-ray diffraction. Selected bulk samples were used to confirm that the findings are relevant to synthesis conditions used commercially. The results help resolve a number of points of confusion and contradiction in the literature. Amongst other important findings, the compositions and synthesis conditions giving rise to layered-layered nano-composites are presented and electrochemical results are used to show how better electrode materials can be achieved by making samples in the single phase-layered regions.
Gaining public attention due, in part, to their potential application as energy storage devices in cars, Lithium-ion batteries have encountered widespread demand, however, the understanding of lithium-ion technology has often lagged behind production. This book defines the most commonly encountered challenges from the perspective of a high-end lithium-ion manufacturer with two decades of experience with lithium-ion batteries and over six decades of experience with batteries of other chemistries. Authors with years of experience in the applied science and engineering of lithium-ion batteries gather to share their view on where lithium-ion technology stands now, what are the main challenges, and their possible solutions. The book contains real-life examples of how a subtle change in cell components can have a considerable effect on cell's performance. Examples are supported with approachable basic science commentaries. Providing a unique combination of practical know-how with an in-depth perspective, this book will appeal to graduate students, young faculty members, or others interested in the current research and development trends in lithium-ion technology.
"Radioisotope Thin-Film Powered Microsystems" describes high energy density microbatteries required for compact long lifetime wireless sensor Microsystems. These microbatteries are presented alongside theories employing high energy density radioisotope thin films in actuating novel electromechanical energy converters. Also discussed are novel wireless sensor architectures that enable long lifetime wireless sensors Microsystems with minimal amounts of radioisotope fuel used. Ultra low-power beta radiation counting clocks are described in order to illustrate the application of radioisotope thin films in realizing the deployment of various components of Microsystems. "Radioisotope Thin-Film Powered Microsystems" also presents the latest work on 3D silicon electrovoltaic converters and energy density microbatteries required for high-power Microsystems.
As long as humans write software, the key to successful software security is making the software development program process more efficient and effective. Although the approach of this textbook includes people, process, and technology approaches to software security, Practical Core Software Security: A Reference Framework stresses the people element of software security, which is still the most important part to manage as software is developed, controlled, and exploited by humans. The text outlines a step-by-step process for software security that is relevant to today's technical, operational, business, and development environments. It focuses on what humans can do to control and manage a secure software development process using best practices and metrics. Although security issues will always exist, students learn how to maximize an organization's ability to minimize vulnerabilities in software products before they are released or deployed by building security into the development process. The authors have worked with Fortune 500 companies and have often seen examples of the breakdown of security development lifecycle (SDL) practices. The text takes an experience-based approach to apply components of the best available SDL models in dealing with the problems described above. Software security best practices, an SDL model, and framework are presented in this book. Starting with an overview of the SDL, the text outlines a model for mapping SDL best practices to the software development life cycle (SDLC). It explains how to use this model to build and manage a mature SDL program. Exercises and an in-depth case study aid students in mastering the SDL model. Professionals skilled in secure software development and related tasks are in tremendous demand today. The industry continues to experience exponential demand that should continue to grow for the foreseeable future. This book can benefit professionals as much as students. As they integrate the book's ideas into their software security practices, their value increases to their organizations, management teams, community, and industry.
This book focuses on the development and implementation of cloud-based, complex software that allows parallelism, fast processing, and real-time connectivity. Software engineering (SE) is the design, development, testing, and implementation of software applications, and this discipline is as well developed as the practice is well established whereas the Cloud Software Engineering (CSE) is the design, development, testing, and continuous delivery of service-oriented software systems and applications (Software as a Service Paradigm). However, with the emergence of the highly attractive cloud computing (CC) paradigm, the tools and techniques for SE are changing. CC provides the latest software development environments and the necessary platforms relatively easily and inexpensively. It also allows the provision of software applications equally easily and on a pay-as-you-go basis. Business requirements for the use of software are also changing and there is a need for applications in big data analytics, parallel computing, AI, natural language processing, and biometrics, etc. These require huge amounts of computing power and sophisticated data management mechanisms, as well as device connectivity for Internet of Things (IoT) environments. In terms of hardware, software, communication, and storage, CC is highly attractive for developing complex software that is rapidly becoming essential for all sectors of life, including commerce, health, education, and transportation. The book fills a gap in the SE literature by providing scientific contributions from researchers and practitioners, focusing on frameworks, methodologies, applications, benefits and inherent challenges/barriers to engineering software using the CC paradigm.
The electric power industry is currently undergoing an unprecedented reform. The deregulation of electricity supply industry has introduced new opportunity for competition to reduce the cost and cut the price. It is a tremendous challenge for utilities to maintain an economical and reliable supply of electricity in such an environment. Faced by an increasingly complicated existence, power utilities need efficient tools and aids to ensure that electrical energy of the desired quality can be provided at the lowest cost. The overall objective, both for short-term and long-term operations, is then to find the best compromise between the requirements of security and economy. That is, effective tools are urgently required to solve highly constrained optimisation problems. In recent years, several major modem optimisation techniques have been applied to power systems. A large number of papers and reports have been published. In this respect, it is timely to edit a book on this topic with an aim to report the state of the art development internationally in this area.
Russia's place in the world as a powerful regional actor can no longer be denied; the question that remains concerns what this means in terms of foreign policy and domestic stability for the actors involved in the situation, as Russia comes to grips with its newfound sources of might.
This book focuses on recent interconnected topics in nanophotonics written by scientists at the forefront of these fields. The book presents results of numerical investigations of light-matter interactions at the nanoscale and in the attosecond regime using first-principles calculations while also discussing recent experimental developments of higher-order harmonic generation for the field of attosecond science. In addition to this, the book reviews recent advances in select topical areas such as highly efficiency solid-state light sources based on nanophotonics, plasmonic photochemical water splitting for efficient energy harvesting, and optical spectroscopy of single-walled carbon nanotubes with quite rich physics for future application in photonics.
This book aims to make the best use of fine-grained smart meter data to process and translate them into actual information and incorporated into consumer behavior modeling and distribution system operations. It begins with an overview of recent developments in smart meter data analytics. Since data management is the basis of further smart meter data analytics and its applications, three issues on data management, i.e., data compression, anomaly detection, and data generation, are subsequently studied. The following works try to model complex consumer behavior. Specific works include load profiling, pattern recognition, personalized price design, socio-demographic information identification, and household behavior coding. On this basis, the book extends consumer behavior in spatial and temporal scale. Works such as consumer aggregation, individual load forecasting, and aggregated load forecasting are introduced. We hope this book can inspire readers to define new problems, apply novel methods, and obtain interesting results with massive smart meter data or even other monitoring data in the power systems.
In the last decade, signi?cant changes have occurred in the ?eld of vehicle motion planning, and for UAVs in particular. UAV motion planning is especially dif?cult due to several complexities not considered by earlier planning strategies: the - creased importance of differential constraints, atmospheric turbulence which makes it impossible to follow a pre-computed plan precisely, uncertainty in the vehicle state, and limited knowledge about the environment due to limited sensor capabilities. These differences have motivated the increased use of feedback and other control engineering techniques for motion planning. The lack of exact algorithms for these problems and dif?culty inherent in characterizing approximation algorithms makes it impractical to determine algorithm time complexity, completeness, and even soundness. This gap has not yet been addressed by statistical characterization of experimental performance of algorithms and benchmarking. Because of this overall lack of knowledge, it is dif?cult to design a guidance system, let alone choose the algorithm. Throughout this paper we keep in mind some of the general characteristics and requirements pertaining to UAVs. A UAV is typically modeled as having velocity and acceleration constraints (and potentially the higher-order differential constraints associated with the equations of motion), and the objective is to guide the vehicle towards a goal through an obstacle ?eld. A UAV guidance problem is typically characterized by a three-dimensional problem space, limited information about the environment, on-board sensors with limited range, speed and acceleration constraints, and uncertainty in vehicle state and sensor data. |
You may like...
Hughes Electrical and Electronic…
Edward Hughes, John Hiley, …
Paperback
R2,289
Discovery Miles 22 890
Power System Analysis and Design, SI…
J. Duncan Glover, Mulukutla Sarma, …
Paperback
Modern Control Systems, Global Edition
Richard Dorf, Robert Bishop
Paperback
R2,514
Discovery Miles 25 140
Electrical Catechism - an Introductory…
George Defrees 1864- Shepardson
Hardcover
R959
Discovery Miles 9 590
|