![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Mechanical engineering > Engines & power transmission
This book summarizes the author's lifetime achievements, offering new perspectives and approaches in the field of metal cutting theory and its applications. The topics discussed include Non-Euclidian Geometry of Cutting Tools, Non-free Cutting Mechanics and Non-Linear Machine Tool Dynamics, applying non-linear science/complexity to machining, and all the achievements and their practical significance have been theoretically proved and experimentally verified.
A hands-on, applications-based approach to the design and analysis of commonly used centrifugal pumps Centrifugal Pump Design presents a clear, practical design procedure that is solidly based on theoretical fluid dynamics fundamentals, without requiring higher math beyond algebra. Intended for use on the factory floor, this book offers a short, easy-to-read description of the fluid mechanic phenomena that occur in pumps, including those revealed by the most recent research. The design procedure incorporates a simple computer program that allows designs to be checked immediately and corrected as needed; readers learn to calibrate the performance calculation program based on their own test data. Other important features of this book include:
This unique handbook closes the gap between research and application and puts the fundamentals of advanced fluid mechanics where they will do the most good: in the hands of engineers, teachers, and designers who create industrial pumps.
This report describes recent trouble-shooting results in aircraft engineering concerning a self-induced fault mechanism of a hydraulic servo-valve. It presents a possible root cause for past aircraft accidents and as such helps to avoid such malfunction and its fatal consequences in the future.
The majority of 0D/1D knock models available today are known for their poor accuracy and the great effort needed for their calibration. Alexander Fandakov presents a novel, extensively validated phenomenological knock model for the development of future engine concepts within a 0D/1D simulation environment that has one engine-specific calibration parameter. Benchmarks against the models commonly used in the automotive industry reveal the huge gain in knock boundary prediction accuracy achieved with the approach proposed in this work. Thus, the new knock model contributes substantially to the efficient design of spark ignition engines employing technologies such as full-load exhaust gas recirculation, water injection, variable compression ratio or lean combustion. About the Author Alexander Fandakov holds a PhD in automotive powertrain engineering from the Institute of Internal Combustion Engines and Automotive Engineering (IVK) at the University of Stuttgart, Germany. Currently, he is working as an advanced powertrain development engineer in the automotive industry.
This book presents selected papers from the 4th International Conference on Mechanical, Manufacturing and Plant Engineering (ICMMPE 2018), which was held in Melaka, Malaysia from the 14th to the 15th of November 2018. The proceedings discuss genuine problems concerning joining technologies that are at the heart of various manufacturing sectors. In addition, they present the outcomes of experimental and numerical works addressing current problems in soldering, arc welding and solid-state joining technologies.
This book discusses the maintenance aspect of rotating machines, which it addresses through a collection of contributions. Sharing the "hands-on" views of experienced engineers on the aspect of maintenance for rotating machines, it offers a valuable reference guide for practicing engineers in the related industries, providing them a glimpse of some of the most common problems associated with rotating machines and equipment in the field, and helping them achieve maximum performance efficiency and high machine availability.
This volume contains the proceedings of MeTrApp 2017, the 4th Conference on Mechanisms, Transmissions and Applications, that was held in Trabzon, Turkey, July 3-5, 2017. The topics treated in this volume are Mechanism Design, Parallel Manipulators, Control Applications, Mechanical Transmissions, Cam Mechanisms, and Dynamics of Machinery. The conference was organised by the IFToMM Technical Committees for "Linkages and Mechanical Controls" and "Gearing and Transmissions" under the patronage of the IFToMM and sponsorship of Karadeniz Technical University, Izmir Institute of Technology and IFToMM Turkey (MAKTED). The aim of the conference was to bring together researchers, scientists, industry experts and students to provide, in a friendly and stimulating environment, the opportunity to exchange know-how and promote collaboration in the field of Mechanism and Machine Science.
Rotating Machinery, Hybrid Testing, Vibro-Acoustics & Laser Vibrometry, Volume 8: Proceedings of the 35th IMAC, A Conference and Exposition on Structural Dynamics, 2017, the eighth volume of ten from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Rotating Machinery, Hybrid Testing, Vibro-Acoustics & Laser Vibrometry, including papers on: Rotating Machinery Vibro-Acoustics Experimental Techniques Advances in Wind Energy Scanning Laser Doppler Vibrometry Methods Hybrid Test Methods
This book draws together the most interesting recent results to emerge in mechanical engineering in Russia, providing a fascinating overview of the state of the art in the field in that country which will be of interest to a wide readership. A broad range of topics and issues in modern engineering are discussed, including dynamics of machines, materials engineering, structural strength and tribological behavior, transport technologies, machinery quality and innovations. The book comprises selected papers presented at the conference "Modern Engineering: Science and Education", held at the Saint Petersburg State Polytechnic University in 2016 with the support of the Russian Engineering Union. The authors are experts in various fields of engineering, and all of the papers have been carefully reviewed. The book will be of interest to mechanical engineers, lecturers in engineering disciplines and engineering graduates.
Some 200 years after the original invention, internal design of a Stirling engine has come to be considered a specialist task, calling for extensive experience and for access to sophisticated computer modelling. The low parts-count of the type is negated by the complexity of the gas processes by which heat is converted to work. Design is perceived as problematic largely because those interactions are neither intuitively evident, nor capable of being made visible by laboratory experiment. There can be little doubt that the situation stands in the way of wider application of this elegant concept. Stirling Cycle Engines re-visits the design challenge, doing so in three stages. Firstly, unrealistic expectations are dispelled: chasing the Carnot efficiency is a guarantee of disappointment, since the Stirling engine has no such pretentions. Secondly, no matter how complex the gas processes, they embody a degree of intrinsic similarity from engine to engine. Suitably exploited, this means that a single computation serves for an infinite number of design conditions. Thirdly, guidelines resulting from the new approach are condensed to high-resolution design charts nomograms. Appropriately designed, the Stirling engine promises high thermal efficiency, quiet operation and the ability to operate from a wide range of heat sources. Stirling Cycle Engines offers tools for expediting feasibility studies and for easing the task of designing for a novel application. Key features: * Expectations are re-set to realistic goals. * The formulation throughout highlights what the thermodynamic processes of different engines have in common rather than what distinguishes them. * Design by scaling is extended, corroborated, reduced to the use of charts and fully Illustrated. * Results of extensive computer modelling are condensed down to high-resolution Nomograms. * Worked examples feature throughout. Prime movers (and coolers) operating on the Stirling cycle are of increasing interest to industry, the military (stealth submarines) and space agencies. Stirling Cycle Engines fills a gap in the technical literature and is a comprehensive manual for researchers and practitioners. In particular, it will support effort world-wide to exploit potential for such applications as small-scale CHP (combined heat and power), solar energy conversion and utilization of low-grade heat.
The fully updated edition of the "furnace man's bible"
This insightful volume shares design ideas to help builders, planners and architects create mass-produced affordable housing that pushes suburban development in more sustainable, liveable directions. The author argues that improving the quality of design in our new homes and communities for greater resiliency, sustainability, and equality, we can build neighborhoods and communities where residents feel more connected t their homes and to one another. Through text, photographs and illustrations, the book reviews prototypical American housing design, then suggest ways to both learn from the past as well as adapt for new environmental imperatives, demographic changes and lifestyle needs. Written by a practicing architect with 25+ years of experience optimizing residential design, this pioneering approach to suburban building will inspire readers to view mass produced housing through a new, modern lens.
This book written by a world-renowned expert with more than forty years of active gas turbine R&D experience comprehensively treats the design of gas turbine components and their integration into a complete system. Unlike many currently available gas turbine handbooks that provide the reader with an overview without in-depth treatment of the subject, the current book is concentrated on a detailed aero-thermodynamics, design and off-deign performance aspects of individual components as well as the system integration and its dynamic operation.This new book provides practicing gas turbine designers and young engineers working in the industry with design material that the manufacturers would keep proprietary. The book is also intended to provide instructors of turbomachinery courses around the world with a powerful tool to assign gas turbine components as project and individual modules that are integrated into a complete system. Quoting many statements by the gas turbine industry professionals, the young engineers graduated from the turbomachinery courses offered by the author, had the competency of engineers equivalent to three to four years of industrial experience.
This volume presents the proceedings of the Joint International Conference of the XII International Conference on Mechanisms and Mechanical Transmissions (MTM) and the XXIII International Conference on Robotics (Robotics '16), that was held in Aachen, Germany, October 26th-27th, 2016. It contains applications of mechanisms and transmissions in several modern technical fields such as mechatronics, biomechanics, machines, micromachines, robotics and apparatus. In connection with these fields, the work combines the theoretical results with experimental testing. The book presents reviewed papers developed by researchers specialized in mechanisms analysis and synthesis, dynamics of mechanisms and machines, mechanical transmissions, biomechanics, precision mechanics, mechatronics, micromechanisms and microactuators, computational and experimental methods, CAD in mechanism and machine design, mechanical design of robot architecture, parallel robots, mobile robots, micro and nano robots, sensors and actuators in robotics, intelligent control systems, biomedical engineering, teleoperation, haptics, and virtual reality.
This book extends the conventional two-dimensional (2D) magnet arrangement into 3D pattern for permanent magnet linear machines for the first time, and proposes a novel dual Halbach array. It can not only effectively increase the radial component of magnetic flux density and output force of tubular linear machines, but also significantly reduce the axial flux density, radial force and thus system vibrations and noises. The book is also the first to address the fundamentals and provide a summary of conventional arrays, as well as novel concepts for PM pole design in electric linear machines. It covers theoretical study, numerical simulation, design optimization and experimental works systematically. The design concept and analytical approaches can be implemented to other linear and rotary machines with similar structures. The book will be of interest to academics, researchers, R&D engineers and graduate students in electronic engineering and mechanical engineering who wish to learn the core principles, methods, and applications of linear and rotary machines.
This book describes machining technology from a wider perspective by considering it within the machining space. Machining technology is one of the metal removal activities that occur at the machining point within the machining space. The machining space consists of structural configuration entities, e.g., the main spindle, the turret head and attachments such the chuck and mandrel, and also the form-generating movement of the machine tool itself. The book describes fundamental topics, including the form-generating movement of the machine tool and the important roles of the attachments, before moving on to consider the supply of raw materials into the machining space, and the discharge of swarf from it, and then machining technology itself. Building on the latest research findings "Theory and Practice in Machining System" discusses current challenges in machining. Thus, with the inclusion of introductory and advanced topics, the book can be used as a gui de and survey of machining technology for students and also as the basis for the planning of future research by professors and researchers in universities and scientific institutions. Professional engineers can use the book as a signpost to technical developments that will be applied in industry in coming years.
This book introduces a paradigm of reverse hypothesis machines (RHM), focusing on knowledge innovation and machine learning. Knowledge- acquisition -based learning is constrained by large volumes of data and is time consuming. Hence Knowledge innovation based learning is the need of time. Since under-learning results in cognitive inabilities and over-learning compromises freedom, there is need for optimal machine learning. All existing learning techniques rely on mapping input and output and establishing mathematical relationships between them. Though methods change the paradigm remains the same-the forward hypothesis machine paradigm, which tries to minimize uncertainty. The RHM, on the other hand, makes use of uncertainty for creative learning. The approach uses limited data to help identify new and surprising solutions. It focuses on improving learnability, unlike traditional approaches, which focus on accuracy. The book is useful as a reference book for machine learning researchers and professionals as well as machine intelligence enthusiasts. It can also used by practitioners to develop new machine learning applications to solve problems that require creativity.
This book provides readers with the fundamental, analytical, and quantitative knowledge of machining process planning and optimization based on advanced and practical understanding of machinery, mechanics, accuracy, dynamics, monitoring techniques, and control strategies that they need to understanding machining and machine tools. It is written for first-year graduate students in mechanical engineering, and is also appropriate for use as a reference book by practicing engineers. It covers topics such as single and multiple point cutting processes; grinding processes; machine tool components, accuracy, and metrology; shear stress in cutting, cutting temperature and thermal analysis, and machine tool chatter. The second section of the book is devoted to "Non-Traditional Machining," where readers can find chapters on electrical discharge machining, electrochemical machining, laser and electron beam machining, and biomedical machining. Examples of realistic problems that engineers are likely to face in the field are included, along with solutions and explanations that foster a didactic learning experience.
This book presents in detail the theory, processes and equipment involved in cold rolling precision forming technologies, focusing on spline and thread shaft parts. The main topics discussed include the status quo of research on these technologies; the design and calculation of process parameters; the numerical simulation of cold rolling forming processes; and the equipment used. The mechanism of cold rolling forming is extremely complex, and research on the processes, theory and mechanical analysis of spline cold rolling forming has remained very limited to date. In practice, the forming processes and production methods used are mainly chosen on the basis of individual experience. As such, there is a marked lack of both systematic, theory-based guidelines, and of specialized books covering theoretical analysis, numerical simulation, experiments and equipment used in spline cold rolling forming processes. Illustrated using tables, 3D photographs and formula derivations, this book fills that gap in the literature.
This book focuses on one of the most important aspects of electrical propulsion systems - the creation of highly reliable safety-critical traction electrical drives. It discusses the methods and models for analysis and optimization of reliability and fault tolerance indices, based on which, it proposes and assesses methods for improving the availability, fault tolerance and performance of traction electric drives.
This book presents proceedings of the third international conference in this field, continuing the success of the previous events. The peer-reviewed and the selected papers are arranged to make the proposed book the most recent and complete overview on the State-of-the-Art in Cable-Driven Parallel Robots! The conference took place 2017 in Quebec, QC, Canada,
This book gathers contributions presented at the 9th Workshop on Cyclostationary Systems and Their Applications, held in Grodek nad Dunajcem, Poland in February 2016. It includes both theory-oriented and practice-oriented chapters. The former focus on heavy-tailed time series and processes, PAR models, rational spectra for PARMA processes, covariance invariant analysis, change point problems, and subsampling for time series, as well as the fraction-of-time approach, GARMA models and weak dependence. In turn, the latter report on case studies of various mechanical systems, and on stochastic and statistical methods, especially in the context of damage detection. The book provides students, researchers and professionals with a timely guide to cyclostationary systems, nonstationary processes and relevant engineering applications.
This book highlights procedures utilized by the design departments of leading global manufacturers, offering readers essential insights into the electromagnetic and thermal design of rotating field (induction and synchronous) electric machines. Further, it details the physics of the key phenomena involved in the machines' operation, conducts a thorough analysis and synthesis of polyphase windings, and presents the tools and methods used in the evaluation of winding performance. The book develops and solves the machines' magnetic circuits, and determines their electromagnetic forces and torques. Special attention is paid to thermal problems in electrical machines, along with fluid flow computations. With a clear emphasis on the practical aspects of electric machine design and synthesis, the author applies his nearly 40 years of professional experience with electric machine manufacturers - both as an employee and consultant - to provide readers with the tools they need to determine fluid flow parameters and compute temperature distributions.
This unique volume imparts practical information on the operation, maintenance, and modernization of heavy performance machines such as lignite mine machines, bucket wheel excavators, and spreaders. Problems of large scale machines (mega machines) are highly specific and not well recognized in the common mechanical engineering environment. Prof. Rusinski and his co-authors identify solutions that increase the durability of these machines as well as discuss methods of failure analysis and technical condition assessment procedures. "Surface Mining Machines: Problems in Maintenance and Modernization" stands as a much-needed guidebook for engineers facing the particular challenges of heavy performance machines and offers a distinct and interesting demonstration of scale-up issues for researchers and scientists from across the fields of machine design and mechanical engineering.
Due to the large number of influencing parameters and interactions, the fuel injection and therewith fuel propagation and distribution are among the most complex processes in an internal combustion engine. For this reason, injection is usually the subject to highly detailed numerical modeling, which leads to unacceptably high computing times in the 3D-CFD simulation of a full engine domain. Marlene Wentsch presents a critical analysis, optimization and extension of injection modeling in an innovative, fast response 3D-CFD tool that is exclusively dedicated to the virtual development of internal combustion engines. About the Author Marlene Wentsch works as research associate in the field of 3D-CFD simulations of injection processes at the Institute of Internal Combustion Engines and Automotive Engineering (IVK), University of Stuttgart, Germany. |
![]() ![]() You may like...
PowerShell, IT Pro Solutions…
William R. Stanek, William Stanek
Hardcover
R1,550
Discovery Miles 15 500
Genetics Education - Current Challenges…
Michal Haskel-Ittah, Anat Yarden
Hardcover
R3,890
Discovery Miles 38 900
Predictive Filtering for Microsatellite…
Lu Cao, Xiaoqian Chen, …
Paperback
R2,994
Discovery Miles 29 940
The Air Transportation Industry…
Rosario Macario, Eddy Van De Voorde
Paperback
R2,651
Discovery Miles 26 510
User-Centred Engineering - Creating…
Michael Richter, Markus Fluckiger
Hardcover
|