![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > General
CBRN and HAZMAT Incidents at Major Public Events Provides methods for planning and responding to any potential hazard at major public events, newly expanded and updated CBRN and HAZMAT Incidents at Major Public Events explains how to prepare for and react to accidental and deliberate incidents involving chemical, biological, radiological, or nuclear (CBRN) materials at any High Visibility Event (HVE). Written by a leading expert with more than 30 years of highly specialized experience in CBRN defense and security, this comprehensive guide covers general planning and preparedness, training, procurement, security methods, tools and technology, incident response, and more. The fully revised second edition incorporates current best practices, new and evolving threats, and lessons learned from major events that have occurred over the past 10 years. New chapters discuss public affairs and crisis communication, CBRN forensics and investigations, and social, behavioral, and psychological issues related to crowd behavior and CBRN responders. More than a dozen all-new practical scenarios address various incidents such as radiological attacks, pandemic illness, industrial chemical accidents, and attacks with biological warfare agents. Helps readers train and manage a multidisciplinary safety and response team, including police, fire, security, medical, military, and civil protection personnel Provides procedures for early-stage planning, building response networks, and developing assessment schemes and training exercises Covers all key areas of incident response, such as initial response, detection and identification, threat assessment, law enforcement and military support, and consequence management Explains the operational environment and unique challenges of major CBRN/HAZMAT events CBRN and HAZMAT Incidents at Major Public Events: Planning and Response, Second Edition is an indispensable resource for leaders, managers, trainers, responders, and support personnel in emergency planning, law enforcement, security, emergency medicine, public health, state and local government, and military agencies that support civil authorities.
Success in an experimental science such as chemistry depends on good laboratory practice, a knowledge of basic techniques, and the intelligent and careful handling of chemicals. Practical Organic Synthesis is a concise, useful guide to good laboratory practice in the organic chemistry lab with hints and tips on successful organic synthesis. Topics covered include: * safety in the laboratory * environmentally responsible handling of chemicals and solvents * crystallisation * distillation * chromatographic methods * extraction and work-up * structure determination by spectroscopic methods * searching the chemical literature * laboratory notebooks * writing a report * hints on the synthesis of organic compounds * disposal and destruction of dangerous materials * drying and purifying solvents Practical Organic Synthesis is based on a successful course in basic organic chemistry laboratory practice which has run for several years at the ETH, Zurich and the University of Berne, and its course book Grundoperationen, now in its sixth edition. Condensing over 30 years of the authors' organic laboratory teaching experience into one easy-to-read volume, Practical Organic Synthesis is an essential guide for those new to the organic chemistry laboratory, and a handy benchtop guide for practising organic chemists.
Managing the Drug Discovery Process, Second Edition thoroughly examines the current state of pharmaceutical research and development by providing experienced perspectives on biomedical research, drug hunting and innovation, including the requisite educational paths that enable students to chart a career path in this field. The book also considers the interplay of stakeholders, consumers, and drug firms with respect to a myriad of factors. Since drug research can be a high-risk, high-payoff industry, it is important to students and researchers to understand how to effectively and strategically manage both their careers and the drug discovery process. This new edition takes a closer look at the challenges and opportunities for new medicines and examines not only the current research milieu that will deliver novel therapies, but also how the latest discoveries can be deployed to ensure a robust healthcare and pharmacoeconomic future. All chapters have been revised and expanded with new discussions on remarkable advances including CRISPR and the latest gene therapies, RNA-based technologies being deployed as vaccines as well as therapeutics, checkpoint inhibitors and CAR-T approaches that cure cancer, diagnostics and medical devices, entrepreneurship, and AI. Written in an engaging manner and including memorable insights, this book is aimed at anyone interested in helping to save countless more lives through science. A valuable and compelling resource, this is a must-read for all students, educators, practitioners, and researchers at large-indeed, anyone who touches this critical sphere of global impact-in and around academia and the biotechnology/pharmaceutical industry.
This detailed volume explores newly-developed methods in PIWI-interacting RNAs (piRNAs) research, methods currently applied to other ncRNAs involved in nuclear regulation which can be used to study piRNAs, and piRNA methods applied in non-classical organisms. It also includes several bioinformatic and biophysical methods related to piRNA studies, consistent with the increasing importance of high-throughput sequencing and computational methods. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials, step-by-step, readily reproducible protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and up-to-date, piRNA: Methods and Protocols serves as an ideal guide for researchers seeking to elucidate the numerous mysteries of this area of multicellular biology.
The word Polyethylene was probably first pronounced in a lecture which M. P. E. Berthelot delivered on April ,27, 1863 to the Chemical Society in Paris, reporting on the "polymerization" of various simple organic compounds (1). Much later this work appeared twice in the literature before the classical ICI breakthrough in the 1930's which is so colorfully described in Ballard's lecture. Once it came up at the end of the last century when H. von Pechmann obtained "a white flocculant material" from the decomposition of diazomethane which, one year later, was termed to be "polymethylene" - (CH ) - from E. Bamberger 2 and F. Tschiemer (1). At that time the investigators were disappointed about this product because it was not what they had expected to find in their experiments. As a result any further work was discontinued. The second time that the word polyethylene appeared in the literature to describe a "white solid powder" was in 1930 when C. S. Marvel and M. E. P. Friedericks (2) attempted to prepare alkylated As compounds in which all five valencies were covalently bonded to five monovalent-aTkyl groups. They reacted Tetra-ethyl-arsenium bromide with butyllithium and expected to get tetra ethyl butyl arsenium. Instead they obtained LiBr + AsEt3 + gaseous products. Delicate and somewhat time-consuming analysis gave a surprising result: ethane and C 's were there in the 4 expected quantities but ethylene was missing - or almost missing - in the gas mixture.
This book presents an authoritative account of the potential of advanced composites such as composites, biocomposites, composites geopolymer, hybrid composites and hybrid biocomposites in aerospace application. It documents how in recent years, composite materials have grown in strength, stature, and significance to become a key material of enhanced scientific interest and resultant research into understanding their behavior for selection and safe use in a wide spectrum of technology-related applications. This collection highlights how their unique combination of superior properties such as low density, high strength, high elastic modulus, high hardness, high temperature capability, and excellent chemical and environmental stability are optimized in technologies within these field.
This book presents experimental as well as simulation methodologies for analysis and development of nanostructures for introducing the desirable effects through modifications in the basic structure of select nanomaterials. The initial chapters in this book focus on exploring the basic aspects of nanomaterials, e.g., distinguishing features, synthesis, processing, characterization, simulation and application dimensions, or nanostructures that enable novel/enhanced properties or functions. The chapters also cover the size-dependent electronic, optical, and magnetic properties of nanomaterials in exposing the specific properties essential for applications in nanophotonics, nanoplasmonics, nanosystems (e.g., biological, medical, chemical, catalytic, energy, and environmental applications), and nanodevices (e.g., electronic, photonic, magnetic, imaging, diagnostic, and sensor applications). This book is a useful resource for students, researchers, and technologists in gathering recent knowledge on novel nanostructures and their use in different application areas.
This detailed volume explores techniques for researching brown adipose tissue (BAT) and the fascinating biology and therapeutic potential of thermogenic adipocytes. The content reflects the advancing technologies in genetics, imaging, and 'omics strategies that are allowing researchers to probe BAT biology at unprecedented depths and detail, yet it also presents classic physiology principles, which remain the core tenets of BAT biology. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Brown Adipose Tissue: Methods and Protocols provides perspectives and detailed protocols for the benefit of both new BAT researchers looking for guidance as well as seasoned researchers who would like to expand their toolkits. Chapter 12 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
This book provides practical guidelines to chemical engineers, plant managers, maintenance engineers, and senior managements in modern chemical processing facilities. It provides guidelines to the readers for operational competencies such as hazard identification (HAZID), hazard operability studies (HAZOP), avoiding mistakes in plant facilities to ensure safety, compliance with various statutory rules and regulations; and management of human resources through improved working conditions, provision of safety equipment etc. It further presents technical information on pressure vessels, design of piping and selection of pumping systems, materials for construction and lining of process units operating at high temperature and corrosive conditions, and criteria for selection of different methods for heating of process units. In addition to its application to existing operations, the book includes information on expansion, diversification, and modernization of facilities and guidelines for revival of old and idle plants. Finally, the authors discuss various safety issues, controlling cost of production, and sustainability topics such as planning and implementing co-generation of steam and power, environmental pollution control for chemical plants and safe disposal of hazardous wastes.
Peptidomimetics have found wide application as bioavailable, and
often potent mimetics of natural peptides. They form the basis of
important classes of enzyme inhibitors, they act as receptor
agonists and antagonists, and they have even been used to mimic DNA
structure. Recent advances in the use of solid-phase organic
synthesis have paved the way for the preparation of libraries of
these structures to allow the rapid optimization of theri
biological properties and hence therapeutic potential. We are also
beginning to gain a greater understanding of the structural
features of this class of compounds that influence their ability to
permeate membranes, and their rate of clearance and metabolism.
This volume brings together many of these critical issues by
highlighting recent advances in a number of core
peptidomimetic-based research.
A thorough history. Lactic acid's chemistry has posed problems that required the large-scale preparation of the acid for study; its manufacture is a complicated process involving many subdisciplines of the science of chemistry; its use encompasses many fields of industrial activity and important asp
This book provides an overview of the use of nanoparticles, carbon-nanotubes, liposomes, and nanopatterned flat surfaces for specific biomedical applications. This book explains the chemical and physical properties of the surface of these materials that allow their use in diagnosis, biosensing and bioimaging devices, drug delivery systems, and bone substitute implants. The toxicology of these particles is also discussed in the light of a new field referred to as nanotoxicology in this book. This book will be useful for engineers, researchers and industry professionals primarily in the fields of polymer science and engineering, materials science, surface science, nanocatalysis, biotechnology and biomedicine.
Drug Safety Evluation Comprehensive and practical guide presenting a roadmap for safety assessment as an integral part of the development of drugs and therapeutics This fourth edition of Drug Safety Evaluation maintains the central objective of presenting an all-inclusive practical guide for those who are responsible for ensuring the safety of drugs and biologics to patients, healthcare providers, those involved in the manufacture of medicinal products, and all those who need to understand how the safety of these products is evaluated and shepherding valuable candidates to market. Individual chapters address specific approaches to evaluation hazards, including problems that are encountered and their solutions. Also covered are the scientific and philosophical bases for evaluation of specific concerns (e.g., carcinogenicity, development toxicity, etc.) to provide both understanding and guidance for approaching the new problems that have come to face both our society and the new challenges they brought. The many changes in regulatory requirements, pharmaceutical development, technology, and the effects of Covid on our society and science have required both extensive revision to every chapter and the addition of four new chapters. Specific sample topics covered in Drug Safety Evaluation include: The drug development process and the global pharmaceutical marketplace and regulation of human pharmaceutical safety Sources of information for consideration in study and program design and in safety evaluation Electronic records, reporting and submission, screens in safety and hazard assessment, and formulations, routes, and dosage regimens Mechanisms and endpoints of drug toxicity, pilot toxicity testing in drug safety evaluation, and repeat dose toxicity Genotoxicity, QSAR tools for drug safety, toxicogenomics, nonrodent animal studies, and developmental and reproductive toxicity testing An appendix which provides an up to date guide to CROs for conducting studies Drug Safety Evaluation was written specifically for the pharmaceutical and biotechnology industries, including scientists, consultants, and academics, to show a utilitarian yet scientifically valid path to the everyday challenges of safety evaluation and the problem solving that is required in drug discovery and development.
This book presents recent developments and future scopes of glassy systems, such as their electrical and optical properties, use as electrodes, photonics devices, battery applications and others, which are of great interest for material scientists and professionals. Each chapter is designed to increase coherence, containing examples and question sets as exercises for in-depth understanding of the text. It provides a valuable resource for researchers, professionals and students in the area of material research especially on Li-doped glasses.
This book, as the fourth volume, continues on ultra-high temperature materials with melting (sublimation or decomposition) points around or over 2500 DegreesC. In this quality the book has over-branched cross-links with the sections and tables of the previous Volumes I-III. Similarly to Volumes I-III, the book includes a thorough treatment of the physical and chemical properties of ultra-high temperature materials, namely such as W semi- and monocarbides, and continues the description of refractory carbides, which was begun from Volume II of the series. The book will be of interest to researchers, engineers, postgraduate, graduate and undergraduate students alike. The readers are provided with the full qualitative and quantitative assessment, which is based on the latest updates in the field of fundamental physics and chemistry, nanotechnology, materials science, design and engineering.
On August 18, 1977 a special 'Soddy Session' was held at the Fifteenth International Congress of the History of Science, Edinburgh, Scotland, with Dr. Thaddeus J. Trenn as Symposium Chairman. This session was organized to commemorate the lOOth anniversary of the birth of Fre derick Soddy (born September 2, 1877, Eastbourne, England; died September 22, 1956, Brighton, England), who was awarded the 1921 Nobel Prize in Chemistry 'for his contributions to our knowledge of the chemistry of radioactive substances, and his investigations into the origin and nature of isotopes'. Soddy taught and/or carried out research at Oxford University (where he was Lee's Professor of Chemistry), McGill University (where he and Sir Ernest Rutherford proposed the disintegration theory of radioactivity), University College, London (where he and Sir William Ramsay demonstrated natural transmuta tion), Glasgow University (where he formulated his displacement law and concept of isotopes), llnd Aberdeen University. In addition to his contributions to radiochemistry, he proposed a number of controversial economic, social, and political theories. The present volume contains the eight lectures presented at the symposium, two additional papers written especially for this volume (Kauffman, Chapter 4 and Krivomazov, Chapter 6), a paper on Soddy's economic thought (Daly, Chapter 11), and three selections from Soddy's works. Furthermore, an introductory account of Soddy's life and work by Thaddeus J. Trenn as well as a Soddy chronology, and name and subject indexes compiled by the editor are provided."
The current volume continues the tradition of the Organic Syntheses series, providing carefully checked and edited experimental procedures that describe important synthetic methods, transformations, reagents, and synthetic building blocks or intermediates with demonstrated utility in organic synthesis. These significant and interesting procedures should prove worthwhile to many synthetic chemists working in increasingly diverse areas. A trusted guide for professionals in organic and medicinal chemistry in academia, government, and industries, including pharmaceuticals, fine chemicals, agrochemicals, and biotechnological products.
This book is the ultimate assembly of recent research activities on molecular architectonics and nanoarchitectonics by authors who are worldwide experts. The book proposes new ways of creating functional materials at the nano level using the concepts of molecular architectonics and nanoarchitectonics, which are expected to be the next-generation approaches beyond conventional nanotechnology. All the contents are categorized by types of materials, organic materials, biomaterials, and nanomaterials. For that reason, non-specialists including graduate and undergraduate students can start reading the book from any points they would like. Cutting-edge trends in nanotechnology and material sciences are easily visible in the contents of the book, which is highly useful for both students and experimental materials scientists.
The only textbook that fully supports the OxfordAQA International AS & A Level Chemistry specification (9620), for first teaching in September 2016. Written by experienced authors, the engaging, international approach ensures a thorough understanding of complex concepts and provides exam-focused practice to build assessment confidence. Help students develop the scientific, mathematical and practical skills and knowledge needed for Oxford AQA assessment success and the step up to university. Ensure students understand the bigger picture, supporting their progression to further study, with synoptic links and a focus on how scientists and engineers apply their knowledge in real life. This pack includes one print textbook and one online textbook. The online textbook license can be accessed on a wide range of devices and is valid until 31st December 2026, for use by one student or teacher. Your first login will be sent to you in the mail on a printed access card.
The matrix isolation (MI) method has now been used for nearly thirty years. During this period it has been actively developed and the range of problems tackled greatly extended. Originally it was used for studies of transient species involv ing vibrational, electronic and ESR spectroscopy. Nowadays the study of transient species forms a comparatively small part of HI work since it has been amply demonstrated that very fruitful information can be obtained of the structure and interactions of stable molecules and their aggregates. In addition to the s ectroscopic methods mentioned above the MI technique is nowadays a standard method in research based on vibrational relaxation, luminescence, Mossbauer, magnetic circular dichroism, pulsed NMR and photoelectron spectroscopy. The matrix isolation technique affords considerable advantages over more conventional methods in most applications of spectroscopy. Areas where the technique has been widely applied, or shows great potential, include: metal atom chemistry, and its relation to surface chemistry, high temperature inorganic species, transition metal complexes, interstellar species, free radicals and unstable molecules, conformational studies, molecular com plexes, and intermolecular forces."
This book review series presents current trends in modern biotechnology. The aim is to cover all aspects of this interdisciplinary technology where knowledge, methods and expertise are required from chemistry, biochemistry, microbiology, genetics, chemical engineering and computer science.Volumes are organized topically and provide a comprehensive discussion of developments in the respective field over the past 3-5 years. The series also discusses new discoveries and applications. Special volumes are dedicated to selected topics which focus on new biotechnological products and new processes for their synthesis and purification.In general, special volumes are edited by well-known guest editors. The series editor and publisher will however always be pleased to receive suggestions and supplementary information. Manuscripts are accepted in English.
This book comprehensively reviews the proteins associated with neurodevelopmental disorders, including autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD). It also discusses the interactions of the associated-proteins, like bromodomain-containing proteins (BCPs), kinases, synaptic proteins, scaffolding proteins, transcriptional factors, and DNA-binding proteins at the subcellular and molecular levels. The book also explores the potential of these proteins as a druggable target and a biomarker in the neurodevelopmental disorders. The book further explores the recent advancements in understanding the important role of epigenetic factors in predisposition to these diseases. Lastly, it presents genetic factors that lead to variation in gene expression in these diseases, disorders management via diet intervention and the future potential of stem cell therapy.
This volume provides a practical guide providing step-by-step methods and protocols on vaccine development and production. Divided into three volumes, Volume 3: Resources for Vaccine Development guides readers through chapters on vaccine adjuvants, vaccine vectors, production, vaccine delivery systems, vaccine bioinformatics, vaccine regulation, and intellectual property. Written in the format of the highly successful Methods in Molecular Biology series, each chapter includes an introduction to the topic, lists necessary materials and reagents, includes tips on troubleshooting and known pitfalls, and step-by-step, readily reproducible protocols. Authoritative and practical, Vaccine Design: Methods and Protocols, Second Edition, Volume 3: Resources for Vaccine Development aims to be a useful practical guide to researchers to help further their study in this field. |
You may like...
Maths Progress International Year 7…
Greg Byrd, Keith Gallick, …
Paperback
R436
Discovery Miles 4 360
Shattering the Denial - Protocols for…
Karen B. Donaldson
Hardcover
Communicative Figurations - Transforming…
Andreas Hepp, Andreas Breiter, …
Hardcover
R1,448
Discovery Miles 14 480
Optimization of Manufacturing Systems…
Yingfeng Zhang, Fei Tao
Paperback
|