![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Medicine > Other branches of medicine > Medical imaging > General
This book constitutes the refereed proceedings of the 6th International Workshop on Computational Methods and Clinical Applications for Musculoskeletal Imaging, MSKI 2018, held in conjunction with MICCAI 2018, in Granada, Spain, in September 2018. The 13 workshop papers were carefully reviewed and selected for inclusion in this volume. Topics of interest include all major aspects of musculoskeletal imaging, for example: clinical applications of musculoskeletal computational imaging; computer-aided detection and diagnosis of conditions of the bones, muscles and joints; image-guided musculoskeletal surgery and interventions; image-based assessment and monitoring of surgical and pharmacological treatment; segmentation, registration, detection, localization and visualization of the musculoskeletal anatomy; statistical and geometrical modeling of the musculoskeletal shape and appearance; image-based microstructural characterization of musculoskeletal tissue; novel techniques for musculoskeletal imaging.
This two-volume set LNCS 11383 and 11384 constitutes revised selected papers from the 4th International MICCAI Brainlesion Workshop, BrainLes 2018, as well as the International Multimodal Brain Tumor Segmentation, BraTS, Ischemic Stroke Lesion Segmentation, ISLES, MR Brain Image Segmentation, MRBrainS18, Computational Precision Medicine, CPM, and Stroke Workshop on Imaging and Treatment Challenges, SWITCH, which were held jointly at the Medical Image Computing for Computer Assisted Intervention Conference, MICCAI, in Granada, Spain, in September 2018. The 92 papers presented in this volume were carefully reviewed and selected from 95 submissions. They were organized in topical sections named: brain lesion image analysis; brain tumor image segmentation; ischemic stroke lesion image segmentation; grand challenge on MR brain segmentation; computational precision medicine; stroke workshop on imaging and treatment challenges.
This book examines non-invasive, electrical-based methods for disease diagnosis and assessment of heart function. In particular, a formalized signal model is proposed since this offers several advantages over methods that rely on measured data alone. By using a formalized representation, the parameters of the signal model can be easily manipulated and/or modified, thus providing mechanisms that allow researchers to reproduce and control such signals. In addition, having such a formalized signal model makes it possible to develop computer tools that can be used for manipulating and understanding how signal changes result from various heart conditions, as well as for generating input signals for experimenting with and evaluating the performance of e.g. signal extraction methods. The work focuses on bioelectrical information, particularly electrical bio-impedance (EBI). Once the EBI has been measured, the corresponding signals have to be modelled for analysis. This requires a structured approach in order to move from real measured data to the model of the corresponding signals. This book proposes a generic framework for this procedure. It can be used as a guide for modelling impedance cardiography (ICG) and impedance respirography (IRG) signals, as well as for developing the corresponding bio-impedance signal simulator (BISS).
Die medizinische Physik hat sich in den letzten Jahren zunehmend als interdisziplin res Gebiet profiliert. Um dem Bedarf nach systematischer Weiterbildung von Physikern, die an medizinischen Einrichtungen t tig sind, gerecht zu werden, wurde das vorliegende Werk geschaffen. Es basiert auf dem Heidelberger Kurs f r medizinische Physik. Die drei B nde vermitteln das f r die Fachanerkennung als Medizinphysiker notwendige medizinische und physikalische Wissen. Im Band I werden die medizinischen, medizintechnischen und biomathematischen Grundlagen behandelt. Band II ist der medizinischen Strahlenphysik, Tomographie, Ultraschalldiagnose, Nuklearmedizin und dem Strahlenschutz gewidmet. Band III stellt Grundlagen und Anwendung der medizinischen Laserphysik und Optik vor.
The four-volume set LNCS 11070, 11071, 11072, and 11073 constitutes the refereed proceedings of the 21st International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2018, held in Granada, Spain, in September 2018. The 373 revised full papers presented were carefully reviewed and selected from 1068 submissions in a double-blind review process. The papers have been organized in the following topical sections: Part I: Image Quality and Artefacts; Image Reconstruction Methods; Machine Learning in Medical Imaging; Statistical Analysis for Medical Imaging; Image Registration Methods. Part II: Optical and Histology Applications: Optical Imaging Applications; Histology Applications; Microscopy Applications; Optical Coherence Tomography and Other Optical Imaging Applications. Cardiac, Chest and Abdominal Applications: Cardiac Imaging Applications: Colorectal, Kidney and Liver Imaging Applications; Lung Imaging Applications; Breast Imaging Applications; Other Abdominal Applications. Part III: Diffusion Tensor Imaging and Functional MRI: Diffusion Tensor Imaging; Diffusion Weighted Imaging; Functional MRI; Human Connectome. Neuroimaging and Brain Segmentation Methods: Neuroimaging; Brain Segmentation Methods. Part IV: Computer Assisted Intervention: Image Guided Interventions and Surgery; Surgical Planning, Simulation and Work Flow Analysis; Visualization and Augmented Reality. Image Segmentation Methods: General Image Segmentation Methods, Measures and Applications; Multi-Organ Segmentation; Abdominal Segmentation Methods; Cardiac Segmentation Methods; Chest, Lung and Spine Segmentation; Other Segmentation Applications.
This book describes the interaction of living matter with photons, neutrons, charged particles, electrons and ions. The authors are specialists in the field of radiation protection. The book synthesizes many years of experiments with external radiation exposure in the fields of dosimetry and radiation shielding in medical, industrial and research fields. It presents the basic physical concepts including dosimetry and offers a number of tools to be used by students, engineers and technicians to assess the radiological risk and the means to avoid them by calculating the appropriate shields. The theory of radiation interaction in matter is presented together with empirical formulas and abacus. Numerous numerical applications are treated to illustrate the different topics. The state of the art in radiation protection and dosimetry is presented in detail, especially in the field of simulation codes for external exposure to radiation, medical projects and advanced research. Moreover, important data spread in different up to date references are presented in this book. The book deals also with accelerators, X-rays facilities, sealed sources, dosimetry, Monte Carlo simulation and radiation regulation. Each chapter is split in two parts depending on the level of details the readers want to focus on. The first part, accessible to a large public, provides a lot of simple examples to help understanding the physics concepts under radiation external exposure. The second part, called "Additional Information" is not mandatory; it aims on explaining topics more deeply, often using mathematical formulations. The book treats fundamental radiometric and dosimetric quantities to describe the interaction in materials under the aspects of absorbed dose processes in tissues. Definitions and applications on limited and operational radiation protection quantities are given. An important aspect are practical engineering tools in industrial, medical and research domains. Source characterization and shielding design are addressed. Also more "exotic" topics, such as ultra intense laser and new generation accelerators, are treated. The state of the art is presented to help the reader to work with the book in a self-consistent way. The basic knowledge necessary to apply Monte Carlo methods in the field of radiation protection and dosimetry for external radiation exposure is provided. Coverage of topics such as variance reduction, pseudo-random number generation and statistic estimators make the book useful even to experienced Monte Carlo practitioners. Solved problems help the reader to understand the Monte Carlo process. The book is meant to be used by researchers, engineers and medical physicist. It is also valuable to technicians and students.
This book comprehensively summarizes the current state of knowledge on malignancies of the gastrointestinal tract. Dedicated organ-based chapters evaluate current treatments and management and provide information on incidence, etiology and biological characteristics. The state of the art in the radiologic and endoscopic staging of gastrointestinal malignancies is described, and guidance is offered on the role of interventional radiology and interventional gastroenterology in the treatment of these challenging tumors. In addition, the book explores novel and evolving treatments, including personalized systemic therapy and minimally invasive surgical and radiology techniques, and addresses patient-reported outcomes and survivorship challenges. It closes by discussing animal models of gastrointestinal malignancies and examining the significance of the Ras superfamily of GTPases. It will be of benefit to all surgeons, oncologists and other specialists who treat these malignancies, as well as to trainees looking to increase their understanding of the field.
This detailed volume includes a rich variety of applications using various instrumentations, probes, disease models, and targets in order to account for the multidisciplinary nature of the use of in vivo fluorescence imagine. The book also includes chapters on the emerging fields of cell tracking, image-guided treatment, and fluorescence imaging in the second NIR window, as well as protocols for evaluation methods before and after in vivo imaging. Written for the highly successful Methods in Molecular Biology series, chapters include brief introductions to their respective topics, lists of the necessary materials and reagents, step-by-step readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, In Vivo Fluorescence Imaging: Methods and Protocols serves as a valuable reference for researchers from numerous fields who wish to become more familiar with in vivo fluorescence imaging techniques.
This book provides a concise yet comprehensive source of information on the classification, evaluation, diagnosis, and management of vascular lesions of the orbit and face. It highlights recent technological innovations and new treatments that have significantly improved the ability to accurately evaluate and successfully treat these lesions with reduced complications. Some of these advances include new imaging modalities, intravascular and intralesional treatment approaches, photodynamic therapy, and additional medical therapies. Many of these advances have led to paradigm shifts in the understanding and management of vascular lesions of the orbit and face. This book, written by experts in the fields of ophthalmology, dermatology, diagnostic and interventional radiology, and oculoplastic surgery, features structured, in-depth chapters that can also be quickly consulted as a reference guide. It is an excellent resource for those in training as well as seasoned practitioners wishing to acquaint themselves with the newest diagnostic and treatment techniques for orbital vascular lesions.
This book collates past and current research on one of the most promising emerging modalities for breast cancer detection. Readers will discover how, as a standalone technology or in conjunction with another modality, microwave imaging has the potential to provide reliable, safe and comfortable breast exams at low cost. Current breast imaging modalities include X- ray, Ultrasound, Magnetic Resonance Imaging, and Positron Emission Tomography. Each of these methods suffers from limitations, including poor sensitivity or specificity, high cost, patient discomfort, and exposure to potentially harmful ionising radiation. Microwave breast imaging is based on a contrast in the dielectric properties of breast tissue that exists at microwave frequencies. The book begins by considering the anatomy and dielectric properties of the breast, contrasting historical and recent studies. Next, radar-based breast imaging algorithms are discussed, encompassing both early-stage artefact removal, and data independent and adaptive beamforming algorithms. In a similar fashion, microwave tomographic reconstruction algorithms are reviewed in the following chapter, introducing the reader to both the fundamental and more advanced algorithms. Apart from imaging, the book also reviews research efforts in extracting clinically useful information from the Radar Target Signature of breast tumours, which is used to classify tumours as either benign or malignant. Finally, the book concludes by describing the current state of the art in terms of prototype microwave breast imaging systems, with a particular emphasis on those which have progressed to the clinical evaluation stage. This work is motivated by the fact that breast cancer is one of the leading causes of death amongst women in Europe and the US, and the second most common cancer in the world today. Such an important area of research will appeal to many scholars and practitioners.p>
This book provides detailed calculated values for the thermal radiative and thermodynamic functions of black-body radiation in finite spectral ranges. The results are presented in tabular form. The areas of thermal power generation, infrared medical diagnostics, solar power and nuclear generation, and astrophysics are included. A range of the thermal radiative and thermodynamic functions are calculated by the authors in the finite frequency/wavenumber/wavelength intervals at different temperatures. This book also contains the tables of the chromaticity coordinates and RGB parameters calculated for different color spaces (Rec.709 (HDTV), sRGB, Adobe RGB). A number of the optimization problems is formulated and solved for various thermal black-body radiative and thermodynamic functions in a finite range of frequencies.
This thesis offers an accessible guide to biomedical phase-contrast imaging with over 20 radiographic illustrations. It focuses on research to improve radiography, and particularly mammography applications, by using a novel X-ray imaging modality that exploits the wave-nature of X-rays, rather than just their absorption in tissue. Further, it explores a broad range of potential applications - from the assessment of breast cancer and the evaluation of microcalcification clusters, to the examination of renal stones. X-ray imaging is an indispensable tool in modern medical diagnostics, and ranges from simple radiography applications to advanced CT imaging protocols. This novel phase-contrast approach has the potential to deliver significantly improved diagnostic information, also and especially in cases where mammography is used for screening purposes. The thesis is based on several studies conducted by the author - working in close interdisciplinary cooperation with medical doctors at two university clinics in Munich - and successfully demonstrates this diagnostic potential in pre-clinical experiments.
This volume covers state-of-the-art applications of solid-state and solution nuclear magnetic resonance( NMR) spectroscopy to study protein structure, dynamics and interactions. Chapters detail various aspects of data acquisition and processing, determination of the structure, multi-timescale dynamics of entities ranging from individual proteins to large macromolecular complexes to intact viral assemblies. The final two chapters will highlight the promise of NMR beyond field strengths of 1 GHz to study the structure, dynamics and interactions of a larger class of proteins and protein complexes of extraordinary biological interest. Written in the highly successful Methods in Molecular Biology series format, chapters provide detailed laboratory protocols and troubleshooting tips that would be of great practical help to NMR spectroscopists with different levels of expertise. Authoritative and cutting-edge, Protein NMR: Methods and Protocol aims to ensure successful results in the further study of this vital field.
This book deals with the new method of laser-driven acceleration for application to radiation biophysics and medicine. It provides multidisciplinary contributions from world leading scientist in order to assess the state of the art of innovative tools for radiation biology research and medical applications of ionizing radiation. The book contains insightful contributions on highly topical aspects of spatio-temporal radiation biophysics, evolving over several orders of magnitude, typically from femtosecond and sub-micrometer scales. Particular attention is devoted to the emerging technology of laser-driven particle accelerators and their application to spatio-temporal radiation biology and medical physics, customization of non-conventional and selective radiotherapy and optimized radioprotection protocols.
This volume presents current advanced technologies and methods used in super-resolution microscopy. The chapters in this book cover a wide range of topics such as introducing super-resolution microscopy into a core facility; two-photon STED microscopy for nanoscale imaging of neural morphology in vivo; correlative SIM-STORM microscopy; two-color single-molecule tracking in live cells; and correlative single molecule localization microscopy and confocal microscopy. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and comprehensive, Super-Resolution Microscopy: Methods and Protocols is a valuable resource for both established and novel researchers and users in this field.
This book explores the non-interventional aspects of interventional pulmonology, focusing on diseases of the central airways. As the field of bronchology and interventional pulmonology expands, newer conditions involving the central airways are being recognized with increasing frequency. Current literature has mainly focused on technical aspects of the subspecialty, but this book illuminates what else interventional pulmonology has to offer the pulmonologist, including diagnosis and alternate therapeutic options. Diseases of the Central Airways: A Clinical Guide presents techniques for the diagnoses, management and treatment of patients with intriguing central airway conditions such as: black bronchoscopy, tracheobronchomalacia, endobronchial tuberculosis, and tracheobronchopathia osteochondroplastica. In-depth chapters are written by international experts and are up-to-date and comprehensive reviews. This important new book will contribute significantly to the welfare of patients with lung ailments of the central airways.
This book describes the molecular mechanisms of lung cancer development and progression that determine therapeutic interventions in the era of genomics, when the rapid evolution in lung cancer diagnosis and treatment necessitates critical review of new results to integrate advances into practice. The text opens with background and emerging information regarding the molecular biology of lung cancer pathogenesis. Updated results regarding lung cancer prevention and screening are discussed, followed by chapters on diagnostic techniques and pathological evaluation. This leads on to a detailed presentation of treatment modalities, from surgery and radiation therapy to standard chemotherapy and targeted agents. The coverage includes resistance to therapy and the emergence of immunotherapy for lung cancer; in addition, the current evidence in respect of small cell lung cancer is summarized. The book presents insights from experts across disciplines to emphasize the importance of collaborative care. Advances in our understanding of issues in geriatric oncology and palliative care complete the comprehensive discussion of lung cancer.
As arrhythmias may be transient in nature and not seen during the shorter recording times of the standard ECG, ECG Holter monitoring allows the physician to make better informed decisions for the cardiac patient. The devices are worn by patients on an outpatient basis for days or weeks and can also be implanted subcutaneously. ECG Holter recordings are especially useful since they can be programmed individually for activation and specific tracing analysis. Designed for rapid study, this book contains 100 illustrative cases in ECG Holter monitoring. Each case consists of a tracing followed by a brief explanation of the findings. 100 Cases in ECG Holter is the perfect resource for busy physicians looking to optimize their skills at interpreting ECG Holter readings.
This book constitutes revised selected papers from the Third International MICCAI Brainlesion Workshop, BrainLes 2017, as well as the International Multimodal Brain Tumor Segmentation, BraTS, and White Matter Hyperintensities, WMH, segmentation challenges, which were held jointly at the Medical Image computing for Computer Assisted Intervention Conference, MICCAI, in Quebec City, Canada, in September 2017. The 40 papers presented in this volume were carefully reviewed and selected from 46 submissions. They were organized in topical sections named: brain lesion image analysis; brain tumor image segmentation; and ischemic stroke lesion image segmentation.
This book constitutes the refereed proceedings of the Second International Workshop on Simulation and Synthesis in Medical Imaging, held in conjunction with MICCAI 2017, in Quebec City, Canada, in September 2017. The 11 revised full papers presented were carefully reviewed and selected from 14 submissions. The contributions span the following broad categories: cross modality (PET/MR, PET/CT, CT/MR, etc.) image synthesis, simulation and synthesis from large-scale image databases, automated techniques for quality assessment images, and several applications of image synthesis and simulation in medical imaging such as image interpolation and segmentation, image reconstruction, cell imaging, and blood flow.
This book constitutes the refereed joint proceedings of the International Workshop on Fetal and Infant Image Analysis, FIFI 2017, and the 6th International Workshop on Ophthalmic Medical Image Analysis, OMIA 2017, held in conjunction with the 20th International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2017, in Quebec City, QC, Canada, in September 2017. The 8 full papers presented at FIFI 2017 and the 20 full papers presented at OMIA 2017 were carefully reviewed and selected. The FIFI papers feature research on advanced image analysis approaches focused on the analysis of growth and development in the fetal, infant and paediatric period. The OMIA papers cover various topics in the field of ophthalmic image analysis.
This book constitutes the refereed joint proceedings of the International Workshop on Computational Methods for Molecular Imaging, CMMI 2017, the International Workshop on Reconstruction and Analysis of Moving Body Organs, RAMBO 2017, and the International Stroke Workshop: Imaging and Treatment Challenges, SWITCH 2017, held in conjunction with the 20th International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2017, in Quebec City, QC, Canada, in September 2017. The 5 full papers presented at FIFI 2017, the 9 full papers presented at RAMBO 2017, and the 4 full papers presented at SWITCH 2017 were carefully reviewed and selected. The CMMI papers cover various areas from image synthesis to data analysis and from clinical diagnosis to therapy individualization, using molecular imaging modalities PET, SPECT, PET/CT, SPECT/CT, and PET/MR. The RAMBO papers present research from both academia and industry, They are organized into the categories "registration and tracking" and "image reconstruction and information retrieval" while application areas include cardiac, pulmonal, abdominal, fetal, and renal imaging. The SWITCH papers focus on CT(A)-based quantitative imaging biomarkers for stroke.
This practical, up-to-date, bedside-oriented radiation oncology book encompasses the essential aspects of the subject with coverage on radiation physics, radiobiology, and clinical radiation oncology. The first two sections examine concepts that are crucial in radiation physics and radiobiology. The third section describes radiation treatment regimens appropriate for the main cancer sites and tumor types.
Measurement of solid tumor response to treatment relies mainly on imaging. WHO tumor response criteria and, more recently, RECIST (response evaluation criteria in solid tumors) have provided means to objectively measure tumor response in clinical trials with imaging. These guidelines have been rapidly adopted in clinical practice to monitor patient treatment and for therapy planning. However, relying only on anatomical information is not always sufficient when evaluating new drugs that will reduce a tumor's functionality while preserving its size. Finding more reliable and reproducible measures of tumor response is one of the most important and difficult challenges facing modern radiology as it requires an entirely new approach to imaging. The aim of this book is to address the assessment of response to treatment by adopting a multidisciplinary perspective, just as occurs in real life in a comprehensive cancer center. Oncologists and imaging experts consider two cancer models, locally advanced disease and metastatic disease, jointly exploring both conventional and advanced means of measuring response to standard treatment protocols and new targeted therapies.
While specialists often guide the care to lung cancer patients, it is often a general radiologist who is left to interpret studies that impact patient care and management. Lung Cancer Imaging provides a comprehensive guide to the diagnosis, staging and overview of the management of lung cancer relevant to practicing radiologists so that they can better understand the decision making issues and provide more directed and useful communication to the treating physicians. It Primary Care physicians will also find this book valuable to understand the relevant issues that they face when one of their patients is being treated for lung cancer. |
You may like...
A Patient's Guide to Medical Imaging
Ronald Eisenberg, JD, MD, FACR, Alexander Margulis, MD
Hardcover
R1,210
Discovery Miles 12 100
Imaging Neuroinflammation, Volume 9
Cornelia Laule, John Port
Paperback
R3,351
Discovery Miles 33 510
Wearable Sensors Applied in Movement…
Fabien Buisseret, Frederic Dierick, …
Hardcover
|