![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Life sciences: general issues
A breakthrough theory that tools and technology are the real drivers of human evolution. Although humans are one of the great apes, along with chimpanzees, gorillas, and orangutans, we are remarkably different from them. Unlike our cousins who subsist on raw food, spend their days and nights outdoors, and wear a thick coat of hair, humans are entirely dependent on artificial things, such as clothing, shelter, and the use of tools, and would die in nature without them. Yet, despite our status as the weakest ape, we are the masters of this planet. Given these inherent deficits, how did humans come out on top? In this fascinating new account of our origins, leading archaeologist Timothy Taylor proposes a new way of thinking about human evolution through our relationship with objects. Drawing on the latest fossil evidence, Taylor argues that at each step of our species' development, humans made choices that caused us to assume greater control of our evolution. Our appropriation of objects allowed us to walk upright, lose our body hair, and grow significantly larger brains. As we push the frontiers of scientific technology, creating prosthetics, intelligent implants, and artificially modified genes, we continue a process that started in the prehistoric past, when we first began to extend our powers through objects. Weaving together lively discussions of major discoveries of human skeletons and artifacts with a reexamination of Darwin's theory of evolution, Taylor takes us on an exciting and challenging journey that begins to answer the fundamental question about our existence: what makes humans unique, and what does that mean for our future?
Multifunctional Theranostic Nanomedicines in Cancer focuses on new trends, applications, and the significance of novel multifunctional nanotheranostics in cancer imaging for diagnosis and treatment. Cancer nanotechnology offers new opportunities for cancer diagnosis and treatment. Multifunctional nanoparticles harboring various functions-including targeting, imaging, and therapy-have been intensively studied with the goal of overcoming the limitations of conventional cancer diagnosis and therapy. Thus theranostic nanomedicines have emerged in recent years to provide an efficient and safer alternative in cancer management. This book covers polymer-based therapies, lipid-based therapies, inorganic particle-based therapies, photo-related therapies, radiotherapies, chemotherapies, and surgeries. Multifunctional Theranostic Nanomedicines in Cancer offers an indispensable guide for researchers in academia, industry, and clinical settings; it is also ideal for postgraduate students; and formulation scientists working on cancer.
The series Advances in Stem Cell Biology is a timely and expansive collection of comprehensive information and new discoveries in the field of stem cell biology. iPSCs for Studying Infectious Diseases, Volume 8 addresses how important induced pluripotent stems cells are and how can they can help treat certain infectious diseases. Somatic cells can be reprogrammed into induced pluripotent stem cells by the expression of specific transcription factors. These cells have been transforming biomedical research over the last 15 years. This volume will address the advances in research of how induced pluripotent stem cells are being used for treatment of different infectious diseases, such as corona virus, coxsackievirus, salmonella infection, influenza virus and much more. The volume is written for researchers and scientists in stem cell therapy, cell biology, regenerative medicine and organ transplantation; and is contributed by world-renowned authors in the field.
The series Advances in Stem Cell Biology is a timely and expansive collection of comprehensive information and new discoveries in the field of stem cell biology. Current Progress in iPSC-derived Cell Types, Volume 10 addresses how induced pluripotent stem cells can be differentiated into different cell types. Somatic cells can be reprogrammed into induced pluripotent stem cells by the expression of specific transcription factors. These cells have been transforming biomedical research over the last 15 years. This volume will address the advances in research of how research of induced pluripotent stem cells can be reprogrammed to develop new treatment technologies in regenerative medicine. The volume is written for researchers and scientists in stem cell therapy, cell biology, regenerative medicine and organ transplantation; and is contributed by world-renowned authors in the field.
Cerebral Dural Arteriovenous Fistulas serves as an authoritative, comprehensive resource for these vascular lesions, describing their anatomy, diagnosis, natural history, and thorough treatment options. Rooted in well-illustrated anatomy and depictions of dAVFs, readers can better understand their pathophysiology, historical discovery, and avenues for treatment, including embolization, surgery, and radiosurgery. Imaging modalities are also discussed extensively as well as the management of these lesions. This reference is appropriate for neurosurgeons, neurologists, interventional radiologists and intensivists that manage these patients, providing clarity, and at the same time, comprehensiveness.
Gut Microbiota in Neurologic and Visceral Diseases presents readers with comprehensive information on the involvement of microbiota in the pathogenesis of neurological disorders. Chapters cover the effect of microbiota on the development of visceral (obesity, type 2 diabetes, heart disease) and neurological disorders (Alzheimer's disease, Parkinson's, depression, anxiety, and autism). Sections focus on the molecular mechanisms and signal transduction processes associated with the links among microbiota-related visceral and neurological disorders. It is hoped that this discussion will not only integrate and consolidate knowledge in this field but will also jumpstart more studies on the involvement of microbiota in the pathogenesis of neurological disorders.
This book offers a comprehensive overview of Alexander disease, a rare and devastating neurological disorder that often affects the white matter of the brain and spinal cord. Its distinctive neuropathology consists of abundant Rosenthal fibers within astrocytes (one of the four major cell types of the central nervous system). Nearly all cases are caused by variants in the gene encoding the intermediate filament protein GFAP, but how these changes in GFAP lead to the widespread manifestations of disease is poorly understood. Astrocytes, while discovered over a century ago, are themselves still much of a mystery. They exhibit considerable diversity, defy precise definition, and yet actively regulate many aspects of nervous system functioning. We also have incomplete understanding of Rosenthal fibers, odd structures that contain GFAP as just one of many components. Whether they are toxic or protective is unknown. Moreover, Rosenthal fibers are not absolutely unique to Alexander disease, and are seen sporadically in a wide variety of other conditions, including brain tumors and multiple sclerosis. GFAP is the third unknown. It is an ancient protein, arising early in the evolution of vertebrates, but its role in normal biology is still a matter of debate. Yet Alexander disease shows, without a doubt, that changing just a single of its 432 amino acids can lead to catastrophe, not just in the astrocytes where GFAP is produced but also in the other cells with which astrocytes interact. Despite all of the unknowns, much has been learned in the past 20 years, and it is time to share this knowledge. This book is intended for recently diagnosed patients and families, as well as non-specialist researchers interested in this neurological disease. It covers historical origins, the state of current knowledge, and prospects for what lies ahead, with citations to the primary literature given throughout.
The Molecular Immunology of Neurological Diseases provides a comprehensive review of current updates in molecular immunogenetics of different neurological diseases. Readers will learn about the role of immune cells and their modulation strategies to help in the development of therapeutic approaches for both acute and chronic neurodegenerative disorders. There is no other book available on the topic. It has long been thought that the brain is an immune-privilege organ with very limited immune response. However recent studies have made clear that both systemic 'brain' and peripheral 'blood' immune cell responses play key roles in determining brain pathology in neurodegenerative disorders. This book summarizes the role of immune cell activation in the central nervous system microenvironment in acute and chronic neurodegenerative disorders. In addition, it discusses the key role of immune cells and their modulation strategies for the development of current therapeutic approaches.
New Targeting in The Reversal of Resistant Glioblastomas discusses alternative treatment strategies that not only target tumor cells but also target the tumor microenvironment, metabolic pathways and interaction of cytokines in tumor cells. The current treatment for primary and recurrent glioblastomas is failing because clinicians are not considering the effect of bone marrow derived cells to the development of resistance to clinically practiced therapies. This book helps readers rethink treatment strategies to successfully fight glioblastomas. It is a valuable resource for cancer researchers, clinicians, graduate students and other members of the biomedical field.
Epigenetics in Cardiovascular Disease, a new volume in the Translational Epigenetics series, offers a comprehensive overview of the epigenetics mechanisms governing cardiovascular disease development, as well as instructions in research methods and guidance in pursing new studies. More than thirty international experts provide an (i) overview of the epigenetics mechanisms and their contribution to cardiovascular disease development, (i) high-throughput methods for RNA profiling including single-cell RNA-seq, (iii) the role of nucleic acid methylation in cardiovascular disease development, (iv) epigenetic actors as biomarkers and drug targets, (v) and the potential of epigenetics to advance personalized medicine. Here, readers will discover strategies to combat research challenges, improve quality of their epigenetic research and reproducibility of their findings. Additionally, discussion of assay and drug development for personalized healthcare pave the way for a new era of understanding in cardiovascular disease.
Arithmetic disability stems from deficits in neurodevelopment, with great individual differences in development or function of an individual at neuroanatomical, neuropsychological, behavioral, and interactional levels. Heterogeneous Contributions to Numerical Cognition: Learning and Education in Mathematical Cognition examines research in mathematical education methods and their neurodevelopmental basis, focusing on the underlying neurodevelopmental features that must be taken into account when teaching and learning mathematics. Cognitive domains and functions such as executive functions, memory, attention, and language contribute to numerical cognition and are essential for its proper development. These lines of research and thinking in neuroscience are discussed in this book to further the understanding of the neurodevelopmental and cognitive basis of more complex forms of mathematics - and how to best teach them. By unravelling the basic building blocks of numerical thinking and the developmental basis of human capacity for arithmetic, this book and the discussions within are important for the achievement of a comprehensive understanding of numerical cognition, its brain basis, development, breakdown in brain-injured individuals, and failures to master mathematical skills.
The book will benefit a reader with a background in physical sciences and applied mathematics interested in the mathematical models of genetic evolution. In the first chapter, we analyze several thought experiments based on a basic model of stochastic evolution of a single genomic site in the presence of the factors of random mutation, directional natural selection, and random genetic drift. In the second chapter, we present a more advanced theory for a large number of linked loci. In the third chapter, we include the effect of genetic recombination into account and find out the advantage of sexual reproduction for adaptation. These models are useful for the evolution of a broad range of asexual and sexual populations, including virus evolution in a host and a host population.
Evolutionary science teaches that humans arose as a population, sharing common ancestors with other animals. Most readers of the book of Genesis in the past understood all humans descended from Adam and Eve, a couple specially created by God. These two teachings seem contradictory, but is that necessarily so? In the fractured conversation of human origins, can new insight guide us to solid ground in both science and theology? In The Genealogical Adam and Eve, S. Joshua Swamidass tests a scientific hypothesis: What if the traditional account is somehow true, with the origins of Adam and Eve taking place alongside evolution? Building on well-established but overlooked science, Swamidass explains how it's possible for Adam and Eve to be rightly identified as the ancestors of everyone. His analysis opens up new possibilities for understanding Adam and Eve, consistent both with current scientific consensus and with traditional readings of Scripture. These new possibilities open a conversation about what it means to be human. In this book, Swamidass untangles several misunderstandings about the words human and ancestry, in both science and theology explains how genetic and genealogical ancestry are different, and how universal genealogical ancestry creates a new opportunity for rapprochement explores implications of genealogical ancestry for the theology of the image of God, the fall, and people "outside the garden" Some think Adam and Eve are a myth. Some think evolution is a myth. Either way, the best available science opens up space to engage larger questions together. In this bold exploration, Swamidass charts a new way forward for peace between mainstream science and the Christian faith.
This is a thoroughly revised and updated edition of an authoritative introduction to ecological modelling. Sven Erik Jorgensen, Editor-in-Chief of the journal Ecological Modelling, and Giuseppe Bendoricchio, Professor of Environmental Modelling at the University of Padova, Italy, offer compelling insights into the subject. This volume explains the concepts and processes involved in ecological modelling, presents the latest developments in the field and provides readers with the tools to construct their own models.
Oligonucleotides represent one of the most significant pharmaceutical breakthroughs in recent years, showing great promise as diagnostic and therapeutic agents for malignant tumors, cardiovascular disease, diabetes, viral infections, and many other degenerative disorders. The Handbook of Analysis of Oligonucleotides and Related Products is an essential reference manual on the practical application of modern and emerging analytical techniques for the analysis of this unique class of compounds. A strong collaboration among thirty leading analytical scientists from around the world, the book provides readers with a comprehensive overview of the most commonly used analytical techniques and their advantages and limitations in assuring the identity, purity, quality, and strength of an oligonucleotide intended for therapeutic use. Topics discussed include: Strategies for enzymatic or chemical degradation of chemically modified oligonucleotides toward mass spectrometric sequencing Purity analysis by chromatographic or electrophoretic methods, including RP-HPLC, AX-HPLC, HILIC, SEC, and CGE Characterization of sequence-related impurities in oligonucleotides by mass spectrometry and chromatography Structure elucidation by spectroscopic methods (IR, NMR, MS) as well as base composition and thermal melt analysis (Tm) Approaches for the accurate determination of molar extinction coefficient of oligonucleotides Accurate determination of assay values Assessment of the overall quality of oligonucleotides, including microbial analysis and determination of residual solvents and heavy metals Strategies for determining the chemical stability of oligonucleotides The use of hybridization techniques for supporting pharmacokinetics and drug metabolism studies in preclinical and clinical development Guidance for the presentation of relevant analytical information towards meeting current regulatory expectations for oligonucleotide therapeutics This resource provides a practical guide for applying state-of-the-art analytical techniques in research, development, and manufacturing settings.
From speech to breathing to overt movement contractions of muscles are the only way other than sweating whereby we literally make a mark on the world. Locomotion is an essential part of this equation and exciting new developments are shedding light on the mechanisms underlying how this important behavior occurs. The Neural Control of Movement discusses these developments across a variety of species including man. The editors focus on highlighting the utility of different models from invertebrates to vertebrates. Each chapter discusses how new approaches in neuroscience are being used to dissect and control neural networks. An area of emphasis is on vertebrate motor networks and particularly the spinal cord. The spinal cord is unique because it has seen the use of genetic tools allowing the dissection of networks for over ten years. This book provides practical details on model systems, approaches, and analysis approaches related to movement control. This book is written for neuroscientists interested in movement control.
The series Advances in Stem Cell Biology is a timely and expansive collection of comprehensive information and new discoveries in the field of stem cell biology. Somatic cells can be reprogrammed into induced pluripotent stem cells (iPSCs) by the expression of specific transcription factors. These cells are transforming biomedical research in the last 15 years. Cell Sources for iPSCs, Volume 7 teaches readers about current advances in the field. It shares up-to-date comprehensive overviews of current advances in the field. This book describes the derivation of iPSCs from different sources in vitro, enabling us to study the cellular and molecular mechanisms involved in different pathologies. Further insights into these mechanisms will have important implications for our understanding of disease appearance, development, and progression. The authors focus on the modern state-of-art methodologies and the leading-edge concepts in the field of stem cell biology. In recent years, remarkable progress has been made in the obtention of iPSCs and their differentiation into several cell types, tissues, and organs using state-of-art techniques. These advantages facilitated identification of key targets and definition of the molecular basis of several disorders. Thus, this book is an attempt to describe the most recent developments in iPSCs biology, which is one of the rising hot topics in the field of molecular and cellular biology today. Here, we present a selected collection of detailed chapters on how we derive iPSCs from distinct sources. Ten chapters written by experts in the field summarize the present knowledge about different cell sources for iPSCs. This volume is written for researchers and scientists in stem cell therapy, cell biology, regenerative medicine, and organ transplantation and is contributed by world-renowned authors in the field.
Biological invasions - the introduction of living organisms beyond their original range - are one of the main drivers of biodiversity loss. They are a major threat to human health and a source of pests and pathogens in the world's farms, forests and fisheries. The growth of international trade and travel means that more species are being introduced to more places than ever before. This book represents the first concerted effort to understand the economic causes and consequences of biological invasions. The volume discusses the theoretical and methodological issues raised by invasion, including control strategies, modelling options, and a study of the economic, institutional and policy conditions that predispose countries to biological invasions. Also included are case studies of fisheries, agricultural systems, tropical forests and protected areas affected by invasive species in locations such as the Black Sea, Australia and Africa, and an evaluation of control programmes. The Economics of Biological Invasions provides an important first step towards codification of the advice needed to develop decision rules, tools and protocols for the effective management of invasive biological species. This volume will be a fascinating read for researchers, academics and students in ecology, economics and environmental science with an interest in the biodiversity problem. The book will also prove to be essential reading for policymakers responsible for health, agriculture, forestry, fisheries and the environment in both developed and developing countries. |
You may like...
Effective Use of Social Media in Public…
Kavita Batra, Manoj Sharma
Paperback
R2,941
Discovery Miles 29 410
Natural Plant Products in Inflammatory…
Roberto de Paula do Nascimento, Ana Paula Da Fonseca Machado, …
Paperback
R3,265
Discovery Miles 32 650
Twin Research for Everyone - From…
Adam D. Tarnoki, David L. Tarnoki, …
Paperback
R3,606
Discovery Miles 36 060
RNA Methodologies - A Laboratory Guide…
Robert E. Farrell Jr
Paperback
R3,455
Discovery Miles 34 550
|