![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Life sciences: general issues > Neurosciences
* Investigates new findings on the predictive brain and what these insights mean for autism and current interventions. * The book has already sold over 2000 copies within 7 months of publishing in Dutch * Peter Vermeulen has established himself as an expert in autism writing, his last books selling thousands of copies and being translated into 10 languages and 5 languages each.
This monograph offers a cross-system exchange and cross-modality investigation into brain-heart interplay. Brain-Heart Interplay (BHI) is a highly interdisciplinary scientific topic, which spreads from the physiology of the Central/Autonomous Nervous Systems, especially Central Autonomic Network, to advanced signal processing and modeling for its activity quantification. Motivated by clinical evidence and supported by recent findings in neurophysiology, this monograph first explores the definition of basic Brain-Heart Interplay quantifiers, and then moves onto advanced methods for the assessment of health and disease states. Non-invasive use of brain monitoring techniques, including electroencephalogram and function Magnetic Resonance Imaging, will be described together with heartbeat dynamics monitoring through pulseoximeter and ECG signals. The audience of this book comprises especially of biomedical engineers and medical doctors with expertise in statistics and/or signal processing. Researchers in the fields of cardiology, neurology, psychiatry, and neuroscience in general may be interested as well.
In this book, experts in the field provide comprehensive descriptions of the neuroanatomy of the hypothalamic neuroendocrine systems. The book begins with an extensive discussion on the structural components of the neuroendocrine systems. The reader will be introduced to the anatomy and biology of the hypothalamus and the pituitary. The human hypothalamus is presented in particular detail using state-of-the-art imaging techniques. In the next section, the neuroanatomy of traditional hypothalamo-hypophyseal systems is highlighted, with chapters describing magnocellular neuroendocrine cells and discussing the respective types of hypothalamic neurons that regulate various pituitary hormones. Following this detailed structural and anatomical description of the neuroendocrine system, the book's final section focuses on the hypothalamic control of neuroendocrine functions. This includes the control of circadian rhythm, metabolism and appetite via specific peptidergic circuits. This book provides essential information on the neuroanatomy and control of neuroendocrine systems, addresses cutting-edge research questions posed by recent advances in the development of potent neuroanatomical tools, and highlights the latest technologies used in neuroendocrinology research, making it a valuable reference guide for students, trainees and established researchers alike. This is the twelfth volume in the International Neuroendocrine Federation (INF) Masterclass in Neuroendocrinology series, which aims to illustrate the highest standards and to encourage the use of the latest technologies in basic and clinical research and hopes to provide inspiration for further exploration into the exciting field of neuroendocrinology.
Metabotropic glutamate receptors (mGluRs) are members of the group C family of G-protein-coupled receptors. Eight different mGlu subtypes have been identified and classified into three groups based on amino acid sequence similarity, agonist pharmacology, and the signal transduction pathways to which they couple. They perform a variety of functions in the central and peripheral nervous systems, being involved in learning, memory, anxiety, and the perception of pain. They are found in pre- and postsynaptic neurons in synapses of the hippocampus, cerebellum, and cerebral cortex, as well as other parts of the bain and peripheral tissues. This volume will focus on the latest research in the role of Group I mGluRs in health and disease.
Under the name of Frontotemporal Dementias (FTD) numerous hereditary and sporadic disorders are listed. FTD may take away speech and language, social skills and ethical judgement, wishes and will, empathy and emotions; it may also impair motor functions. FTD may affect men and women in midlife or during old age leading to the demolition of the uniqueness of the human mind. In the last decade of the 20th century and in the first two decades of the 21st century, progress in the understanding of clinical, neuropathological, biochemical, and genetic aspects of FTD has accelerated. The novel awareness about FTD has directed young generations of researchers toward the study of this complex group of disorders. This Volume has been formulated with the participation of some of the leading scientists who have contributed to the development of knowledge in the clinical and basic science arenas. It captures the current central elements that are relevant to an up-to-date understanding of causes and pathogenesis of multiple forms of FTD. The volume is an opus that represents a distillation of the work of many scientists and addresses the current directions in the study of one of the most complex groups of diseases. In view of its structure, the book could also be used as a textbook, that offers both a broad and deep analysis of major areas in FTD. This book, planned by the International Society for Frontotemporal Dementias, is distinctive as it opens a window to a wide landscape about the biology of FTD. Thus, the book represents a moment of reflection on the present state of our knowledge of FTD and a collective vision toward scientific progress. The authors of each chapter share their knowledge and vision aimed at reducing the suffering which is caused by FTD.
This stimulating analysis reviews the broad potential of animal models to foster a deeper understanding of human pathology, strengthen connections between genetic and behavioral studies, and develop more effective treatments for mental disorders. Widely-studied and lesser-used species are examined in models that capture features along the continuum of normative and pathological behavior. The models highlight genetic causes of core features, or endophenotypes, of developmental, internalizing, and externalizing disorders, as well as dementia. Expert contributors address questions ranging from how suitable species are chosen for study to the costs and benefits of using inbred versus outbred strains, and the effects of housing environment on subject animals. Larger issues addressed include how to evaluate the applicability of animal behavioral models to the human condition and how these models can harness emerging molecular technologies to further our understanding of the genetic basis of mental illness. Included in the coverage: Mating and fighting in Drosophila. Attachment and social bonding. Impulsivity in rodents and humans. Animal models of cognitive decline. Animal models of social cognition. Future directions for animal models in behavioral genetics. A detailed map of where this evolving field is headed, Animal Models of Behavior Genetics shows geneticists, molecular biologists, and cognitive neuroscientists paths beyond established concepts toward a more knowledgeable and collaborative future.
This book highlights the state of the field in the new, provocative line of research into the cognition and behavior of the domestic dog. Eleven chapters from leading researchers describe innovative methods from comparative psychology, ethology and behavioral biology, which are combined to create a more comprehensive picture of the behavior of Canis familiaris than ever before. Each of the book's three parts highlights one of the perspectives relevant to providing a full understanding of the dog. Part I covers the perceptual abilities of dogs and the effect of interbreeding. Part II includes observational and experimental results from studies of social cognition - such as learning and social referencing - and physical cognition in canids, while Part III summarizes the work in the field to date, reviewing various conceptual and methodological approaches and testing anthropomorphisms with regard to dogs. The final chapter discusses the practical application of behavioral and cognitive results to promote animal welfare. This volume reflects a modern shift in science toward considering and studying domestic dogs for their own sake, not only insofar as they reflect back on human beings.
This book proposes an applied epistemological framework for investigating science, social cognition and religious thinking based on inferential patterns that recur in the different domains. It presents human rationality as a tool that allows us to make sense of our (physical or social) surroundings. It shows that the resulting cognitive activity produces a broad spectrum of outputs, such as scientific models and experimentation, gossip and social networks, but also ancient and contemporary deities. The book consists of three parts, the first of which addresses scientific modeling and experimentation, and their application to the analysis of scientific rationality. Thus, this part continues the tradition of eco-cognitive epistemology and abduction studies. The second part deals with the relationship between social cognition and cognitive niche construction, i.e. the evolutionarily relevant externalization of knowledge onto the environment, while the third part focuses on what is commonly defined as "irrational", thus being in a way dialectically opposed to the first part. Here, the author demonstrates that the "irrational" can be analyzed by applying the same epistemological approach used to study scientific rationality and social cognition; also in this case, we see the emergence of patterns of rationality that regulate the relationships between agents and their environment. All in all, the book offers a coherent and unitary account of human rationality, providing a basis for new conceptual connections and theoretical speculations.
This book presents the current concepts of semaphorin biology. In the early 1990s, semaphorins were originally identified as axon guidance cues that function during neuronal development. However, cumulative findings have clarified that they have diverse functions in many physiological processes, including cardiogenesis, angiogenesis, vasculogenesis, osteoclastogenesis, retinal homeostasis, and immune regulation. Additionally, they have been implicated in the pathogenesis of various human diseases, including tumorigenesis/tumor metastasis, neuroregenerative diseases, retinal degeneration, irregular pulse/sudden death, and immune disorders. Based on this current research background, the book covers the essential state-of-the-art findings for basic scientists in biochemistry, molecular biology, neuroscience, developmental biology, and structural biology, as well as for physicians in neurology, cardiology, oncology, orthopedic surgery, otorhinolaryngology, ophthalmology, allergology, and rheumatology.
The technique of needle microinjection has become a prominent experimental approach in biological research. Cellular organelles, DNA and RNA, enzymes, structural proteins, metabolites, ions and antibodies are just some of the molecular and cellular elements that have been transposed from test tubes into living cells by needle injection. This technique is broadly used as a valuable tool for the study of many different cell responses in a variety of systems. This text presents information on the technique of needle microinjection's principles, the required equipment, preparation of receiving cells and injected material and the analysis of the results. It provides detailed protocols for a wide range of important applications and different cellular systems from the fields of cell cycle regulation, signal transduction, study of transcriptional regulations, cytoskeletal functions, secretion and intracellular transport.
The science of cannabinoids is 50 years old. These past years provided a remarkable and constant number of breakthroughs, showing that the signaling mediated by endocannabinoids and lipid mediators impacts almost every function of the body. Indeed, this represents a special field of research, which allows tackling the complexity of biological functions, and provides potential therapeutic frameworks for a plethora of diseases. The number of exciting discoveries brought up to the scientific community almost on a daily basis highlights the importance of an updated volume on this topic. Particularly, given that potential therapeutic benefits of cannabis and cannabinoids are currently under heavy analysis in many Countries worldwide. Hence, the main objective of this book is to explore not only some of the many functions of endocannabinoids (and lipid mediators) in physiological control of networks at a cellular and molecular level, but also to extend this knowledge for potential use of cannabinoids and/or drugs regulating endocannabinoid levels in vivo as therapeutic target(s) in neurological and neuropsychiatric disorders. In this book new findings and ideas about the endocannabinoid system and its roles as neuronal circuit modulator related to human brain pathologies characterized by alterations in neuroplasticity will be highlighted. Endocannabinoid roles in key systems controlling appetite, pain, learning and memory, as well as sleep and stress responses will be presented. In addition, pathological processes associated with changes in endocannabinoid signaling will be discussed in the context of anxiety, autism, depression and addiction. This book will provide an excellent background to researchers looking for extending their areas of interest, and to newcomers in the field.
This ambitious compendium provides an extensive overview on the "supporting cells" of the vertebrate central nervous system, these being glial cells which far outnumber neurons but are much less understood. Covering multiple aspects of this family of transporters-- from structural properties, to their involvement in signaling and gene expression regulation, this volume presents the most recent research on the roles of glial amino acid transporters as key molecules of brain metabolism and signaling.
The goal for this volume is to provide an up-to-date review of the discriminative stimulus properties of major psychoactive drug classes with an emphasis on how this paradigm enhances our understanding of these drugs and how these findings translate from animals to humans. The drug discrimination paradigm applies to both drugs of abuse and drugs for treating mental illnesses, and research from these studies has provided immense translational value for learning about the mechanisms responsible for drug effects in humans.
This thesis reports on a novel system for extracellular recordings of the activity of excitable cells, which relies on an organic, charge-modulated field-effect transistor (FET) called OCMFET. The book shows how, thanks to the intrinsic biocompatibility, lightness, and inexpensiveness of the material used, this new system is able to overcome several problems typical of of "classic" electronic and bioelectronic. It provides a full description of the system, together with a comprehensive report of the successful experimental trials carried out on both cardiac and nerve cells, and a concise yet comprehensive overview of bioelectronic interfaces and organic sensors for electrophysiological applications.
This book shows cognitive scientists in training how mathematics, computer science and science can be usefully and seamlessly intertwined. It is a follow-up to the first two volumes on mathematics for cognitive scientists, and includes the mathematics and computational tools needed to understand how to compute the terms in the Fourier series expansions that solve the cable equation. The latter is derived from first principles by going back to cellular biology and the relevant biophysics. A detailed discussion of ion movement through cellular membranes, and an explanation of how the equations that govern such ion movement leading to the standard transient cable equation are included. There are also solutions for the cable model using separation of variables, as well an explanation of why Fourier series converge and a description of the implementation of MatLab tools to compute the solutions. Finally, the standard Hodgkin - Huxley model is developed for an excitable neuron and is solved using MatLab.
This book reviews recent progress in cortical development research, focusing on the mechanisms of neural stem cell regulation, neuronal diversity and connectivity formation, and neocortical organization. Development of the cerebral cortex, the center for higher brain functions such as cognition, memory, and decision making, is one of the major targets of current research. The cerebral cortex is divided into many areas, including motor, sensory, and visual cortices, each of which consists of six layers containing a variety of neurons with different activities and connections. As this book explains, such diversity in neuronal types and connections is generated at various levels. First, neural stem cells change their competency over time, giving sequential rise to distinct types of neurons and glial cells: initially deep layer neurons, then superficial layer neurons, and lastly astrocytes. The activities and connections of neurons are further modulated via interactions with other brain regions, such as the thalamocortical circuit, and via input from the environment. This book on cortical development is essential reading for students, postdocs, and neurobiologists.
The central nervous system, which includes the brain and spinal cord, has a high metabolic demand. The physiology of the brain is such that it is easily affected by alterations in other systems, which in turn can compromise cerebral blood flow and oxygenation. Together the brain and spinal cord control the automatic function of our body systems. While other systems of body controls individual functions, central nervous system at the same time does many different functions, especially, controlling the function of other systems. This interaction between the brain and other systems is important when it comes to understanding how injuries to the brain can, at times, produce complications in remote organs or systems of the body, such as the lungs. This book explains the lesser-known crosstalks between acutely or chronically affected brain and lung, describing the pathophysiology of the lung following brain injury and discussing in detail the conflicts between the brain and lungs in relation to the tidal volumes, positive end-expiratory pressures, arterial carbon dioxide and oxygen levels, recruitment maneuvers and positioning, as well as potential therapeutic targets.
Written by an international team of leading experts in neuroscience, this book presents an overview of some of the main schools of thought as well as current research trends in neuroscience. It focuses on neural top-down causation applied to hot topics like consciousness, emotions, the self and the will, action and behavior, neural networks, brains and society. A special feature of the book is pertinent presentations and lively discussions on the topic. The book provides the reader with invaluable information on what the latest research is in this field and will enable the reader to gain considerable amount of knowledge as well as hints for further enquiry. This is the first book on the topic of neuroscience and top-down causation, and is written at a level that will interest both academics and the general readers. The extensive and lively discussions included in the book offer the reader a clear idea of the research in this field, and what will emerge as the main trends.
The discovery of new cell types, such asgrid and time cells, in the hippocampus has been accompanied by major anatomical and theoretical insights in the recent years. This book provides comprehensive, up-to-date information about the hippocampal formation and especially the neural basis of episodic memory, spatial location (the formation of the cognitive map) and temporal representation. The first part of the book describes the information flow from pre-hippocampal areas into the hippocampus, the second part discusses the different types of hippocampal processing and finally, the third part depicts the influence that the hippocampal processing has on other brain structures that are perhaps more closely tied to explicit cognitive or behavioral output. This book is intended for neuroscientists, especially for those who are involved in research on the hippocampus, as well as for behavioral scientists and neurologists."
Leading researchers are specially invited to provide a complete understanding of a key topic within the multidisciplinary fields of physiology, biochemistry and pharmacology. In a form immediately useful to scientists, this periodical aims to filter, highlight and review the latest developments in these rapidly advancing fields.
This book reviews some of the most important scientific and philosophical theories concerning the nature of mind and consciousness. Current theories on the mind-body problem and the neural correlates of consciousness are presented through a series of biographical sketches of the most influential thinkers across the fields of philosophy of mind, psychology and neuroscience. The book is divided into two parts: the first is dedicated to philosophers of mind and the second, to neuroscientists/experimental psychologists. Each part comprises twenty short chapters, with each chapter being dedicated to one author. A brief introduction is given on his or her life and most important works and influences. The most influential theory/ies developed by each author are then carefully explained and examined with the aim of scrutinizing the strengths and weaknesses of the different approaches to the nature of consciousness.
Reflecting a vast amount of new information concerning the functional characteristics of the various 5-HT receptor subtypes and the Na+-dependent serotonin transporter (SERT), this volume provides state of the art methodologies currently applied in serotonin research from leading experts in the field. Serotonin Receptor Technologies describes approaches that vary from molecular biological and biochemical techniques (e.g., regarding receptor dimerization), fluorescence microscopy and imaging applications, flow cytometry, the use of organotypic slice and cell cultures to the generation of genetically modified animal models and the development of sophisticated behavioral tests, thus covering a wide spectrum of techniques to study serotonergic signaling in detail. Written for the popular Neuromethods series, chapters include the kind of detail and practical advice that ensures successful results in the lab. Authoritative and convenient, Serotonin Receptor Technologies serves to foster both basic and translational research aiming to further deepen our understanding of the various facets of aminergic systems, as well as to aid research on similar problems with related GPCRs and neurotransmitter transporters.
Current Laboratory Methods in Neuroscience Research is a research manual for both students and seasoned researchers. It focuses on commonly-used techniques employed in neuroscience research, presented in a simple, step-by-step manner for laboratory use. The manual also offers a "blueprint" for bench-to-bedside research designed to facilitate multidisciplinary neuroscience pursuits. Sections include coverage of neurohistological techniques, in vitro preparations, leukocyte isolation and application in neuroscience, standard laboratory nucleic acid and protein detections, nanomedicine, bioimaging, neuroelectrophysiology, immunohistochemistry and autoradiography, analysis of gene expression, and animal models.
|
![]() ![]() You may like...
|