![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Medicine > Other branches of medicine > Nuclear medicine
This volume highlights the remarkable new developments in brain imaging, including those that apply magnetic resonance imaging (MRI) and Positron Emission Tomography (PET), that allow us to non invasively study the living human brain in health and in disease. These technological advances have allowed us to obtain new and powerful insights into the structure and function of the healthy brain as it develops across the life cycle, as well as the molecular make up of brain systems and circuits as they develop and change with age. New brain imaging technologies have also given us new insights into the causes of many common brain disorders, including ADHD, schizophrenia, depression and Alzheimer's disease, which collectively affect a large segment of the population. These new insights have major implications for understanding and treating these brain disorders, and are providing clinicians with the first ever set of biomarkers that can be used to guide diagnosis and monitor treatment effects. The advances in brain imaging over the last 20 years, summarized in this volume, represent a major advance in modern biomedical sciences. The Authors of this volume are leaders in the development of PET and MRI methods as well as clinical and translational researchers skilled in their use in patients with brain disorders. Individual chapters of this volume focus on the use of specific methodologies, covering the full range of PET chemistry based approaches as well as MRI methods from structural and diffusion tensor based imaging, to functional MRI of functional brain circuitry, to pharmacological MRI and MRI spectroscopic molecular imaging.
The North Atlantic Treaty Organization (NATO) has sponsored research and personnel safety standards development for exposure to Radiofrequency Radiation (RFR) for over twenty years. The Aerospace Medical Panel of the Advisory Group For Aerospace Research and Development (AGARD) sponsored Lecture Series No. 78 Radiation Hazards,! in 1975, in the Netherlands, Germany, and Norway, on the subject of Radiation Hazards to provide a review and critical analysis of the available information and concepts. In the same year, Research Study Group 2 on Protection of Personnel Against Non-Ionizing Electromagnetic Radiation (Panel VIIl of AC/243 Defence Research Group, NATO) proposed a revision to Standardization Agreement (STANAG) 2345. The intent of the proposal was to revise the ST ANAG to incorporate frequency-dependent-RFR safety guidelines. These changes are documented in the NATO STANAG 2345 (MED), Control and Recording of Personnel Exposure to Radiofrequency Radiation,2 promulgated in 1979. Research Study Group 2 (RSG2) of NATO Defense Research Group Panel VIII (AC1243) was organized, in 1981, to study and contribute technical information concerning the protection of military personnel from the effects of radiofrequency electromagnetic radiation. A workshop at the Royal Air Force Institute of Aviation Medicine, Royal Aircraft Establishment, Farnborough, U. K. was held to develop and/or compile sufficient knowledge on the long-term effects of pulsed RFR to maintain safe procedures and to minimize unnecessary operational constraints.
The contents of this volume are based upon presentations made to the Second European Symposium on Radiopharmacy and Radiopharmaceuticals which was held in St. Catharine's College Cambridge in March 1985. This meeting was organized by the Radiopharmacy Group of the British Nuclear Medicine Society under the auspices of the European Joint Committee on Radio pharmaceuticals of the ENMS / SNME. The Joint Committee acknowledges the special effort which was made by the local organizers to prepare this meeting the quality of which is undoubtedly reflected in the proceedings. The wide ranging aspects of Radiopharmacy are reflected in this volume which not only deals with specialized topics, such as aerosols and biodistribution studies, but which also deals with the professional aspects of Radiopharmacy Practice. We are of the opinion that this book complements earlier publications to give an ongoing picture of the practice of Radiopharmacy and the state of the art in Europe. As well as acknowledging the contribution of the British Radiopharmacists I would also mention the support of my co chairman Prof. Dr M.G. Woldring, the members of the Joint Committee and last but not least Mrs. M. Busker, who prepared the camera ready copy. P.H. Cox Co-ordinating Chairman European Joint Committee on Radiopharmaceuticals Rotterdam XI CCNrRIBUTORS Anderson, M.L. - Pharnacy department, London Hospital London, UK. Angelberger, P. - Osterreichische Forschungszentrum Seibersdorf GmbH, Wien, Austria. Claessens, R.A.M.J. - Department of Nuclear Medicine, St. Radboud Ziekenhuis, Nijrnegen, The Netherlands."
This volume is the scientific chronicle of the NATO Advanced Research Workshop on Computational Aspects of the Study of Biological Macro molecules by Nuclear Magnetic Resonance Spectroscopy, which was held June 3-8, 1990 at Il Ciocco, near Barga, Italy. The use of computers in the study of biological macromolecules by NMR spectroscopy is ubiquitous. The applications are diverse, including data col lection, reduction, and analysis. Furthermore, their use is rapidly evolv ing, driven by the development of new experimental methods in NMR and molecular biology and by phenomenal increases in computational perfor mance available at reasonable cost. Computers no longer merely facilitate, but are now absolutely essential in the study of biological macromolecules by NMR, due to the size and complexity of the data sets that are obtained from modern experiments. The Workshop, and this proceedings volume, provide a snapshot of the uses of computers in the NMR of biomolecules. While by no means exhaustive, the picture that emerges illustrates both the. importance and the diversity of their application."
This book addresses essential principles of research according to the scientific method for medical imaging technology research. The scope of this book covers the nature of scientific research; quantitative and qualitative approaches essentials; research planning; literature review fundamentals; research methods; data collection, analysis, and interpretation; and communicating research findings. The book meets the educational requirements on Research Principles and Concepts (for entry to practice) of the following professional radiologic technology associations: the American Society of Radiologic Technologists (ASRT), the Canadian Association of Medical Radiation Technologists (CAMRT), the College of Radiographers in the United Kingdom, and radiography societies and associations in Asia, Australia, Europe, and Africa. This is an ideal book for radiologic technologists, nuclear medicine technologists, and radiation therapists seeking to get started in research in their profession. Additionally, biomedical imaging engineering technologists, radiologists, and medical imaging physicists may use this as a "guiding principles" textbook.
To continue the support for the growing trend of chemistry involvement in nuclear medicine, the Division of Nuclear Chemistry and Technology (DNCT) of the American Chemical Society (ACS) planned for a symposium to cover this aspect. This was expressed in arequest to me, as a member of the Program Committee, to organize a symposium on topics related to nuclear and radiochemistry applications to nuclear medicine. Realizing the growing interest in imaging, specially with positron emitting radioisotopes, I invited several colleagues to study with me the idea of imaging centers and the involvement of chemists in their structure and function. The formulated Organizing Committee supported this idea which evolved in proposing an extended international symposium to be held in conjunction with the 206th ACS National meeting in Chicago, Illinois, U. S. A. on August 22-27, 1993. The following are the members of the Organizing Committee: Jorge R. Barrio, Ph. D. Thomas E. Boothe, Ph. D. J. Robert Dahl, Ph. D. Robert F. Dannals, Ph. D. Bruce R. Erdal, Ph. D. Mark M. Goodman, Ph. D. George W. Kabalka, Ph. D. James F. Lamb, Ph. D. Ronald G. Manning, Ph. D. Henry C. Padgett, Ph. D. Roy S. Tilbury, Ph. D. Steven W. Yates, Ph. D. and Ali M. Emran, Ph. D.
This book provides detailed information on the electrochemistry of technetium compounds. After a brief physico-chemical characterization of this element, it presents the comparative chemistry of technetium, manganese and rhenium. Particular attention is paid to the stability, disproportionation, comproportionation, hydrolysis and polymerization reactions of technetium ions and their influence on the observed redox systems. The electrochemical properties of both inorganic as well as organic technetium species in aqueous and non-aqueous solutions are also discussed. The respective chapters cover the whole spectrum of topics related to the application of technetium in nuclear medicine, electrochemistry of technetium in spent nuclear fuel (including corrosion properties of technetium alloys), and detecting trace amounts of technetium with the aid of electrochemical methods. Providing readers with information not easily obtained in any other single source, the book will appeal to researchers working in nuclear chemistry, nuclear medicine or the nuclear industry.
Drs. Vitola and Delbeke assembled a group of standout contributors in order to create a resource that advances the knowledge and skills of experienced nuclear cardiologists and radiologists while also preparing residents for the cutting-edge field of nuclear cardiology. Diagnostic tools, physics and instrumentation, and radiopharmaceuticals and protocols central to the field are examined. The comprehensive text covers key applications of myocardial perfusion imaging, including applications in special populations and in emergency departments. Risk assessment, pitfalls, and artefacts are addressed. Additional chapters detail the value of cardiac MRI, multislice computed tomography, stress echocardiography, and PET and PET/CT to nuclear cardiology. Practical case presentations and a wealth of illustrations reinforce instruction on diagnostic guidelines and methods.
The purpose and subject of this book is to provide a comprehensive overview of all types of phantoms used in medical imaging, therapy, nuclear medicine and health physics. For ionizing radiation, dosimetry with respect to issues of material composition, shape, and motion/position effects are all highlighted. For medical imaging, each type of technology will need specific materials and designs, and the physics and indications will be explored for each type. Health physics phantoms are concerned with some of the same issues such as material heterogeneity, but also unique issues such as organ-specific radiation dose from sources distributed in other organs. Readers will be able to use this book to select the appropriate phantom from a vendor at a clinic, to learn from as a student, to choose materials for custom phantom design, to design dynamic features, and as a reference for a variety of applications. Some of the information enclosed is found in other sources, divided especially along the three categories of imaging, therapy, and health physics. To our knowledge, even though professionally, many medical physicists need to bridge the three catagories described above.
The application of 3D methodology has recently been receiving increasing attention at many PET centres, and this monograph is an attempt to provide a state-of-the-art review of this methodology, covering 3D reconstruction methods, quantitative procedures, current tomography performance, and clinical and research applications. No such review has been available until now to assist PET researchers in understanding and implementing 3D methodology, and in evaluating the performance of the available imaging technology. In all the chapters, the subject matter is treated in sufficient depth to appeal equally to the physicist or engineer who wishes to establish the methodology, and to PET investigators with experience in 2D PET who wish to familiarize themselves with the concepts and advantages of 3D, and to be made aware of the pitfalls.
Accurate radiation dosimetry is a requirement of radiation oncology, diagnostic radiology and nuclear medicine. It is necessary so as to satisfy the needs of patient safety, therapeutic and diagnostic optimisation, and retrospective epidemiological studies of the biological effects resulting from low absorbed doses of ionising radiation. The radiation absorbed dose received by the patient is the ultimate consequence of the transfer of kinetic energy through collisions between energetic charged particles and atoms of the tissue being traversed. Thus, the ability of the medical physicist to both measure and calculate accurately patient dosimetry demands a deep understanding of the physics of charged particle interactions with matter. Interestingly, the physics of charged particle energy loss has an almost exclusively theoretical basis, thus necessitating an advanced theoretical understanding of the subject in order to apply it appropriately to the clinical regime. Each year, about one-third of the world's population is exposed to ionising radiation as a consequence of diagnostic or therapeutic medical practice. The optimisation of the resulting radiation absorbed dose received by the patient and the clinical outcome sought, whether diagnostic or therapeutic, demands accuracy in the evaluation of the radiation absorbed doses resulting from such exposures. This requirement arrises primarily from two broadly-encompassing factors: The requirement in radiation oncology for a 5% or less uncertainty in the calculation and measurement of absorbed dose so as to optimise the therapeutic ratio of the probabilities of tumour control and normal tissue complications; andThe establishment and further refinement of dose reference levels used in diagnostic radiology and nuclear medicine to minimise the amount of absorbed dose for a required degree of diagnostic benefit. The radiation absorbed dose is the outcome of energetic charged particles decelerating and transferring their kinetic energy to tissue. The calculation of this energy deposition, characterised by the stopping power, is unique in that it is derived entirely from theoretical principles. This dominant role of the associated theory makes its understanding of fundamental to the calculation of the radiation absorbed dose to the patient. The theoretical development of charged particle energy lossrecognised inmedical physics textbooksis in general limited to basic derivations based upon classical theory, generally a simplified form of the Bohr theory. More advanced descriptions of, for example, the Bethe-Bloch quantum resultusually do not go beyond the simplepresentationofthe result "without "full explanation of the theoretical development of the theory and consideration of its limitations, its dependencies upon the Born perturbation theory and the various correction factors needed to correct for the failures of that Born theory at higher orders. This is not appropriate for a full understanding of the theory that its importance deserves. The medical radiation physicist should be aware of the details of the theoretical derivations of charged particle energy loss in order to appreciate the levels of accuracy in tabular data provided in reports and the calculation methodologies used in modern Monte Carlo calculations of radiation dosimetry."
Methods involving nuclear physics are today finding applications in many disciplines, including important areas of medicine. This book intends to bridge the gap between the many applications in medicine and the underlying basic nuclear physics which needs to be understood by those applying the methods. In addition, those active in nuclear science will gain insight into the manifold applications of their subject. The main topics of the book are: physical foundations, instrumentation, diagnostics (imaging), therapies and radiation safety. The book will appeal to medical doctors active in nuclear medicine as well as to medical physicists.
This book explains in detail the potential value of the hybrid modalities, SPECT-CT and PET-CT, in the imaging of cardiac innervation in a wide range of conditions and diseases, including ischemic heart disease, diabetes mellitus, heart failure, amyloidosis, heart transplantation, and ventricular arrhythmias. Imaging of the brain-heart axis in neurodegenerative disease and stress and of cardiotoxicity is also discussed. The roles of the various available tracers are fully considered, and individual chapters address radiopharmaceutical development under GMP, imaging physics, and kinetic modeling software. Highly relevant background information is included on the autonomic nervous system of the heart and its pathophysiology, and in addition future perspectives are discussed. Awareness of the importance of autonomic innervation of the heart for the optimal management of cardiac patients is growing, and there is an evident need for objective measurement techniques or imaging modalities. In this context, Autonomic Innervation of the Heart will be of wide interest to clinicians, researchers, and industry.
This book is designed to give the reader a solid understanding of the physics and instrumentation aspects of PET, including how PET data are collected and formed into an image. Topics include basic physics, detector technology used in modern PET scanners, data acquisition, and 3D reconstruction. A variety of modern PET imaging systems are also discussed, including those designed for clinical services and research, as well as small-animal imaging. Methods for evaluating the performance of these systems are also outlined. The book will interest nuclear medicine students, nuclear medicine physicians, and technologists.
-Presents a practical, case-based approach -Includes real clinical problems and examples, with worked through solutions -Written in an accessible and student friendly manner
Atlas of Nuclear Cardiology provides detailed guidance on how to and how not to perform imaging studies so you can get the best image quality and avoid artifacts. Ami E. Iskandrian and the editorial team responsible for Braunwald's Heart Disease bring you the most clinically relevant, case-based, evidence-based, practical, and contemporary atlas of nuclear cardiology. High-quality, full-color images ensure that you get the possible results. Access the fully searchable contents online at www.expertconsult.com, along with a moving image library that demonstrates myocardial perfusion imaging, myocardial tracers, PET, PET-CT, and gated SPECT. Stay current on recent developments in nuclear cardiac imaging such as equilibrium radionuclide angiocardiography (ERNA) and first-pass radionuclide angiography (FPRNA). Master the application of techniques to specific clinical situations with detailed case studies and discussions of challenging issues. Gain a clear visual understanding from numerous, high-quality images in full color. Find information quickly and easily thanks to a practical, consistent format throughout the text. Master nuclear imaging with the practical, case-based information you need, from the Braunwald experts you trust
This book explains clearly and in detail all aspects of radiation protection in nuclear medicine, including measurement quantities and units, detectors and dosimeters, and radiation biology. Discussion of radiation doses to patients and to embryos, fetuses, and children forms a central part of the book. Phantom models, biokinetic models, calculations, and software solutions are all considered, and a further chapter is devoted to quality assurance and reference levels. Occupational exposure also receives detailed attention. Exposure resulting from the production, labeling, and injection of radiopharmaceuticals and from contact with patients is discussed and shielding calculations are explained. The book closes by considering exposure of the public and summarizing the "rules of thumb" for radiation protection in nuclear medicine. This is an ideal textbook for students and a ready source of useful information for nuclear medicine specialists and medical physics experts.
This book provides a comprehensive introduction to current state-of-the-art auto-segmentation approaches used in radiation oncology for auto-delineation of organs-of-risk for thoracic radiation treatment planning. Containing the latest, cutting edge technologies and treatments, it explores deep-learning methods, multi-atlas-based methods, and model-based methods that are currently being developed for clinical radiation oncology applications. Each chapter focuses on a specific aspect of algorithm choices and discusses the impact of the different algorithm modules to the algorithm performance as well as the implementation issues for clinical use (including data curation challenges and auto-contour evaluations). This book is an ideal guide for radiation oncology centers looking to learn more about potential auto-segmentation tools for their clinic in addition to medical physicists commissioning auto-segmentation for clinical use. Features: Up-to-date with the latest technologies in the field Edited by leading authorities in the area, with chapter contributions from subject area specialists All approaches presented in this book are validated using a standard benchmark dataset established by the Thoracic Auto-segmentation Challenge held as an event of the 2017 Annual Meeting of American Association of Physicists in Medicine
This practical guide is a comprehensive reference of cases with FDG images obtained on dedicated PET tomographs and hybrid scintillation gamma cameras. Dr. Dominique Delbeke and her collegues at Vanderbilt University Medical Center, along with recognized international experts, provide the reader with in-depth coverage on all aspects of FDG imaging. Unique to this book is the up-to-date coverage on both the technical and clinical aspects of FDG imaging and its cases of those malignancies practitioners are likey to encounter in their daily practice. The text also presents normal and physiologic interpretation of FDG imaging, related pitfalls in imaging interpretation, and the role of FDG imaging in different types of body tumors. Enhanced with over 300 FDG images, this book will serve as an excellent stand-alone guide for nuclear medicine physicians, radiologists, oncologists, and residents in their practice of clinical PET.
Experimental microdosimetry deals with the measurement of charged particle energy deposition in tissue equivalent volumes, ranging in size from nanometres to micrometres. Microdosimetry is employed to improve our understanding of the relationship between radiation energy deposition, the resulting biological effects, and the appropriate quantities to be used in characterizing and quantifying radiation quality. Although many reviews and contributions to the field have been published over the past fifty years, this new book is the first to provide a single, up to date, and easily accessible account of experimental microdosimetry. This book is designed to be used in medical, radiation, and health physics courses and by Master’s and PhD students. In addition to serving as an introductory text to the field for graduate students, this book will also be of interest as a teaching and reference resource for graduate supervisors and established researchers. Drs. Lennart Lindborg and Anthony Waker have spent a life-time career in experimental microdosimetry research in academic, industrial and regulatory environments and have observed the development of the field from its early days as a recognized discipline; they bring to this book particular knowledge and experience in the design, construction, operation and use of tissue equivalent gas ionization counters and chambers.
This pioneering book, now in its fourth edition, presents the cutting-edge developments in pediatric nuclear medicine. Thoroughly revised and updated, it retains the fundamentals that anchor the book s distinguished reputation and includes the latest advances in PET/CT, SPECT, hybrid imaging, and molecular imaging. "Pediatric Nuclear Medicine and Molecular Imaging, Fourth Edition," is an excellent resource for nuclear medicine physicians, diagnostic radiologists, pediatricians, and residents and fellows. The Fourth Edition features: . 16 new chapters, including PET and PET/CT in Children and Young Adults; Lymphoscintigraphy; Skeletal Scintigraphy; Neuroblastoma; Lymphomas and Lymphoproliferative Disorders; Functional Imaging of Pediatric Musculoskeletal Tumors; Solid Tumors in Childhood; Pediatric Molecular Imaging; Combined PET/MRI in Childhood; Radiation Exposures; Radiation Protection in Pediatric Nuclear Medicine; and Dose Optimization in Pediatric Nuclear Medicine. . Discussion of the use of image fusion and hybrid imaging in children. . Strategies for communicating potential radiation risk to patients, families and members of the healthcare team. . Methods to optimize pediatric radiopharmaceutical administered doses and improve image quality. S. Ted Treves, MD, is Professor of Radiology at Harvard Medical School, Founder and Former Chief, Division of Nuclear Medicine and Molecular Imaging, Children s Hospital Boston (1970-2011). In 2013, he received the Society of Nuclear Medicine and Molecular Imaging s Georg Charles de Hevesy Nuclear Pioneer Award for outstanding contributions to the field of Nuclear Medicine."
Written by one of the world's leading experts in the field of nuclear medicine dosimetry, this text describes in detail the use of internal dose calculations in the practice of nuclear medicine. While radiation therapy with external sources of radiation always employs calculations of dose to optimize therapy for each patient, this is not routinely conducted in nuclear medicine therapy. As the trend towards an increasing role of dosimetry in therapy planning increases, this book reviews the available methods and technologies available to make this a more common practice. The book begins by covering the mathematical fundamentals of internal dose calculations, and uses sample calculations to demonstrate key principles. The book then moves forward to describe anthropomorphic models, dosimetric models, and types and uses of diagnostic and therapeutic radiopharmaceuticals. The depth of coverage makes it useful reference and guide for researchers performing dose calculations and for physicians considering incorporating dose calculations into the treatment of their cancer patients.
This book is a guide for the constantly growing community of the users of medical thermal imaging. It describes where and how an infrared equipment can be used in a strictly standardised way and how one can ultimately comprehensively report the findings. Due to their insight into the complex mechanisms behind the distribution of surface temperature, future users of medical thermal imaging should be able to provide careful, and cautious, interpretations of infrared thermograms, thus avoiding the pitfalls of the past. The authors are well-known pioneers of the technique of infrared imaging in medicine who have combined strict standard-based evaluation of medical thermal images with their expertise in clinical medicine and related fields of health management.
The second in a three-volume set exploring Problems and Solutions in Medical Physics, this volume explores common questions and their solutions in Nuclear Medicine. This invaluable study guide should be used in conjunction with other key textbooks in the field to provide additional learning opportunities. Topics include radioactivity and nuclear transformation, radionuclide production and radiopharmaceuticals, non-imaging detectors and counters, instrumentation for gamma imaging, SPECT and PET/CT, imaging techniques, radionuclide therapy, internal radiation dosimetry, and quality control and radiation protection in nuclear medicine. Each chapter provides examples, notes, and references for further reading to enhance understanding. Features: Consolidates concepts and assists in the understanding and applications of theoretical concepts in medical physics Assists lecturers and instructors in setting assignments and tests Suitable as a revision tool for postgraduate students sitting medical physics, oncology, and radiology sciences examinations |
You may like...
The Profiler Diaries 2 - From Crime…
Gerard Labuschagne
Paperback
(2)
|