![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Thermodynamics & statistical physics > Thermodynamics
This book covers emerging energy storage technologies and material characterization methods along with various systems and applications in building, power generation systems and thermal management. The authors present options available for reducing the net energy consumption for heating/cooling, improving the thermal properties of the phase change materials and optimization methods for heat storage embedded multi-generation systems. An in-depth discussion on the natural convection-driven phase change is included. The book also discusses main energy storage options for thermal management practices in photovoltaics and phase change material applications that aim passive thermal control. This book will appeal to researchers and professionals in the fields of mechanical engineering, chemical engineering, electrical engineering, renewable energy, and thermodynamics. It can also be used as an ancillary text in upper-level undergraduate courses and graduate courses in these fields.
Fractal and Trans-scale Nature of Entropy: Towards a Geometrization of Thermodynamics develops a new vision for entropy in thermodynamics by proposing a new method to geometrize. It investigates how this approach can accommodate a large number of very different physical systems, going from combustion and turbulence towards cosmology. As an example, a simple interpretation of the Hawking entropy in black-hole physics is provided. In the life sciences, entropy appears as the driving element for the organization of systems. This book demonstrates this fact using simple pedagogical tools, thus showing that entropy cannot be interpreted as a basic measure of disorder.
This book investigates a wide range of phase equilibrium modelling and calculation problems for compositional thermal simulation. Further, it provides an effective solution for multiphase isenthalpic flash under the classical framework, and it also presents a new flash calculation framework for multiphase systems, which can handle phase equilibrium and chemical reaction equilibrium simultaneously. The framework is particularly suitable for systems with many phases and reactions. In this book, the author shows how the new framework can be generalised for different flash specifications and different independent variables. Since the flash calculation is at the heart of various types of compositional simulation, the findings presented here will promote the combination of phase equilibrium and chemical equilibrium calculations in future simulators, aiming at improving their robustness and efficiency.
This thesis investigates the combustion chemistry of cyclohexane, methylcyclohexane, and ethylcyclohexane on the basis of state-of-the-art synchrotron radiation photoionization mass spectrometry experiments, quantum chemistry calculations, and extensive kinetic modeling. It explores the initial decomposition mechanism and distribution of the intermediates, proposes a novel formation mechanism of aromatics, and develops a detailed kinetic model to predict the three cycloalkanes' combustion properties under a wide range of conditions. Accordingly, the thesis provides an essential basis for studying much more complex cycloalkanes in transport fuels and has applications in engine and fuel design, as well as emission control.
The concept of traceability has evolved to ensure measurements can be communicated consistently and unambiguously. This new edition of a classic reference offers a systematic treatment of traceable temperature measurement and presents a practical guide to the principles and purpose of measurements. With an emphasis on recognizing sources of uncertainty, Nicholas and White examine the most commonly used thermometers: liquid-in-glass thermometers, platinum resistance thermometers, thermocouples and radiation thermometers. The new edition features:
This book offers a comprehensive overview of thermodynamics. It is divided into four parts, the first of which equips readers with a deeper understanding of the fundamental principles of thermodynamics of equilibrium states and of their evolution. The second part applies these principles to a series of generalized situations, presenting applications that are of interest both in their own right and in terms of demonstrating how thermodynamics, as a theory of principle, relates to different fields. In turn, the third part focuses on non-equilibrium configurations and the dynamics of natural processes. It discusses both discontinuous and continuous systems, highlighting the interference among non-equilibrium processes, and the nature of stationary states and of fluctuations in isolated systems. Lastly, part four introduces the relation between physics and information theory, which constitutes a new frontier in fundamental research. The book includes step-by-step exercises, with solutions, to help readers to gain a fuller understanding of the subjects, and also features a series of appendices providing useful mathematical formulae. Reflecting the content of modern university courses on thermodynamics, it is a valuable resource for students and young scientists in the fields of physics, chemistry, and engineering.
Features twenty-five chapter contributions from an international array of distinguished academics based in Asia, Eastern and Western Europe, Russia, and the USA. This multi-author contributed volume provides an up-to-date and authoritative overview of cutting-edge themes involving the thermal analysis, applied solid-state physics, micro- and nano-crystallinity of selected solids and their macro- and microscopic thermal properties. Distinctive chapters featured in the book include, among others, calorimetry time scales from days to microseconds, glass transition phenomena, kinetics of non-isothermal processes, thermal inertia and temperature gradients, thermodynamics of nanomaterials, self-organization, significance of temperature and entropy. Advanced undergraduates, postgraduates and researchers working in the field of thermal analysis, thermophysical measurements and calorimetry will find this contributed volume invaluable. This is the third volume of the triptych volumes on thermal behaviour of materials; the previous two receiving thousand of downloads guaranteeing their worldwide impact.
This book provides deep insight into the physical quantity known as chemical activity. The author probes deep into classical thermodynamics in Part I, and then into statistical thermodynamics in Part II, to provide the necessary background. The treatment has been streamlined by placing some background material in appendices. Chemical Activity is of interest not only to those in chemical thermodynamics, but also to chemical engineers working with mass transfer and its applications - for example, separation methods.
Illustrating the development of Brownian ratchets, from their foundations, to their role in the description of life at the molecular scale and in the design of artificial nano-machinery, this text will appeal to both advanced graduates and researchers entering the field. Providing a self-contained introduction to Brownian ratchets, devices which rectify microscopic fluctuations, Part I avoids technicalities and sets out the broad range of physical systems where the concept of ratchets is relevant. Part II supplies a single source for a complete and modern theoretical analysis of ratchets in regimes such as classical vs quantum and stochastic vs deterministic, and in Part III readers are guided through experimental developments in different physical systems, each highlighting a specific unique feature of ratchets. The thorough and systematic approach to the topic ensures that this book provides a complete guide to Brownian ratchets for newcomers and established researchers in physics, biology and biochemistry.
Natural phenomena consist of simultaneously occurring transport processes and chemical reactions. These processes may interact with each other and may lead to self-organized structures, fluctuations, instabilities, and evolutionary systems. "Nonequilibrium Thermodynamics, 3rd edition" emphasizes the unifying role of thermodynamics in analyzing the natural phenomena. This third edition updates and expands on the first and second editions by focusing on the general balance equations for coupled processes of physical, chemical, and biological systems. The new edition contains a new chapter on stochastic approaches to include the statistical thermodynamics, mesoscopic nonequilibrium thermodynamics, fluctuation theory, information theory, and modeling the coupled biochemical systems in thermodynamic analysis. This new addition also comes with more examples and practice problems.
Maximum Dissipation: Non-Equilibrium Thermodynamics and its Geometric Structure explores the thermodynamics of non-equilibrium processes in materials. The book develops a general technique created in order to construct nonlinear evolution equations describing non-equilibrium processes, while also developing a geometric context for non-equilibrium thermodynamics. Solid materials are the main focus in this volume, but the construction is shown to also apply to fluids. This volume also: * Explains the theory behind thermodynamically-consistent construction of non-linear evolution equations for non-equilibrium processes * Provides a geometric setting for non-equilibrium thermodynamics through several standard models, which are defined as maximum dissipation processes * Emphasizes applications to the time-dependent modeling of soft biological tissue Maximum Dissipation: Non-Equilibrium Thermodynamics and its Geometric Structure will be valuable for researchers, engineers and graduate students in non-equilibrium thermodynamics and the mathematical modeling of material behavior.
Starting from a broad overview of heat transport based on the Boltzmann Transport Equation, this book presents a comprehensive analysis of heat transport in bulk and nanomaterials based on a kinetic-collective model (KCM). This has become key to understanding the field of thermal transport in semiconductors, and represents an important stride. The book describes how heat transport becomes hydrodynamic at the nanoscale, propagating very much like a viscous fluid and manifesting vorticity and friction-like behavior. It introduces a generalization of Fourier's law including a hydrodynamic term based on collective behavior in the phonon ensemble. This approach makes it possible to describe in a unifying way recent experiments that had to resort to unphysical assumptions in order to uphold the validity of Fourier's law, demonstrating that hydrodynamic heat transport is a pervasive type of behavior in semiconductors at reduced scales.
This thesis reveals how the feedback trap technique, developed to trap small objects for biophysical measurement, could be adapted for the quantitative study of the thermodynamic properties of small systems. The experiments in this thesis are related to Maxwell's demon, a hypothetical intelligent, "neat fingered" being that uses information to extract work from heat, apparently creating a perpetual-motion machine. The second law of thermodynamics should make that impossible, but how? That question has stymied physicists and provoked debate for a century and a half. The experiments in this thesis confirm a hypothesis proposed by Rolf Landauer over fifty years ago: that Maxwell's demon would need to erase information, and that erasing information-resetting the measuring device to a standard starting state-requires dissipating as much energy as is gained. For his thesis work, the author used a "feedback trap" to study the motion of colloidal particles in "v irtual potentials" that may be manipulated arbitrarily. The feedback trap confines a freely diffusing particle in liquid by periodically measuring its position and applying an electric field to move it back to the origin.
Low Grade Heat Driven Multi-effect Distillation and Desalination describes the development of advanced multi-effect evaporation technologies that are driven by low grade sensible heat, including process waste heat in refineries, heat rejection from diesel generators or microturbines, and solar and geothermal energy. The technologies discussed can be applied to desalination in remote areas, purifying produced water in oil-and-gas industries, and to re-concentrate process liquor in refineries. This book is ideal for researchers, engineering scientists, graduate students, and industrial practitioners working in the desalination, petrochemical, and mineral refining sectors, helping them further understand the technologies and opportunities that relate to their respective industries. For researchers and graduate students, the core enabling ideas in the book will provide insights and open up new horizons in thermal engineering.
This volume looks afresh at the life and works of Lord Kelvin including his standing and relationships with Charles Darwin, T. S Huxley and the X-club, thereby throwing new light on the nineteenth-century conflict between the British energy and biology specialists. It focuses on two principal issues. Firstly, there is the contribution made by Kelvin to the formulation of the Laws of Thermodynamics, both personal and in the content of the scientific communications exchanged with other workers, such as Joule and Clausius. Secondly, there is Kelvin's impact on the wider field of science such as thermoelectricity and geology (determination of the age of the earth). Of late a number of studies and initiatives, including the Centenary celebrations of Kelvin's death and exhibits such as that of the 'Revolutionary Scientist' in the Hunterian Museum, Glasgow, have been undertaken aiding the redefinition of Kelvin's greatness and achievements. The book also raises awareness to 'improve our approach to the teaching of elementary thermodynamics by attempting to empathise with Kelvin's perspective'.It is completed by a full biography, overviews of various monuments to his memory, and short 'Stories in Pictures' on the Atlantic cable, Maxwell's Demon, the universities associated with the development of thermodynamics and the Royal Society of Edinburgh. Scientists and engineers with an interest in thermodynamics and anyone interested in the work of Lord Kelvin will find benefit in Kelvin, Thermodynamics and the Natural World.
This book investigates the common nature of granular and active systems, which is rooted in their intrinsic out-of-equilibrium behavior, with the aim of finding minimal models able to reproduce and predict the complex collective behavior observed in experiments and simulations. Granular and active matter are among the most studied systems in out-of-equilibrium statistical physics. The book guides readers through the derivation of a fluctuating hydrodynamic description of granular and active matter by means of controlled and transparent mathematical assumptions made on a lattice model. It also shows how a macroscopic description can be provided from microscopic requirements, leading to the prediction of collective states such as cooling, swarming, clustering and the transitions among them. The analytical and numerical results shed new light on the physical connection between the local, microscopic properties of few particles and the macroscopic collective motion of the whole system.
This book provides detailed calculated values for the thermal radiative and thermodynamic functions of black-body radiation in finite spectral ranges. The results are presented in tabular form. The areas of thermal power generation, infrared medical diagnostics, solar power and nuclear generation, and astrophysics are included. A range of the thermal radiative and thermodynamic functions are calculated by the authors in the finite frequency/wavenumber/wavelength intervals at different temperatures. This book also contains the tables of the chromaticity coordinates and RGB parameters calculated for different color spaces (Rec.709 (HDTV), sRGB, Adobe RGB). A number of the optimization problems is formulated and solved for various thermal black-body radiative and thermodynamic functions in a finite range of frequencies.
This book describes and systemizes analytical and numerical solutions for a broad range of instantaneous and continuous, stationary and moving, concentrated and distributed, 1D, 2D and 3D heat sources in semi-infinite bodies, thick plane layers, thin plates and cylinders under various boundary conditions. The analytical solutions were mainly obtained by the superimposing principle for various parts of the proposed 1D, 2D and 3D heat sources and based on the assumption that only heat conduction plays a major role in the thermal analysis of welds. Other complex effects of heat transfer in weld phenomena are incorporated in the solutions by means of various geometrical and energetic parameters of the heat source. The book is divided into 13 chapters. Chapter 1 briefly reviews various welding processes and the energy characteristics of welding heat sources, while Chapter 2 covers the main thermophysical properties of the most commonly used alloys. Chapter 3 describes the physical fundamentals of heat conduction during welding, and Chapter 4 introduces several useful methods for solving the problem of heat conduction in welding. Chapters 5 and 6 focus on the derivation of analytical solutions for many types of heat sources in semi-infinite bodies, thick plane layers, thin plates and cylinders under various boundary conditions. The heat sources can be instantaneous or continuous, stationary or moving, concentrated or distributed (1D, 2D or 3D). In Chapter 7 the temperature field under programmed heat input (pulsed power sources and weaving sources) is analyzed. In turn, Chapters 8 and 9 cover the thermal cycle, melting and solidification of the base metal. Heating and melting of filler metal are considered in Chapter 10. Chapter 11 addresses the formulation and solution of inverse heat conduction problems using zero-, first- and second-order algorithms, while Chapter 12 focuses on applying the solutions developed here to the optimization of welding conditions. In addition, case studies confirm the usefulness and feasibility of the respective solutions. Lastly, Chapter 13 demonstrates the prediction of local microstructure and mechanical properties of welded joint metals, while taking into account their thermal cycle. The book is intended for all researches, welding engineers, mechanical design engineers, research engineers and postgraduate students who deal with problems such as microstructure modeling of welds, analysis of the mechanical properties of welded metals, weldability, residual stresses and distortions, optimization of welding and allied processes (prewelding heating, cladding, thermal cutting, additive technologies, etc.). It also offers a useful reference guide for software engineers who are interested in writing application software for simulating welding processes, microstructure modeling, residual stress analysis of welds, and for robotic-welding control systems.
The ancient Greeks believed that all matter was composed of four elements: earth, water, air, and fire. By a remarkable coincidence (or perhaps not), today we know that there are four states of matter: solids (e.g. earth), liquids (e.g. water), gasses (e.g. air) and plasma (e.g. ionized gas produced by fire). The plasma state is beyond the scope of this book and we will only look at the first three states. Although on the microscopic level all matter is made from atoms or molecules, everyday experience tells us that the three states have very different properties. The aim of this book is to examine some of these properties and the underlying physics.
The aim of this book is to give a physical treatment of the kinetic theory of gases and magnetoplasmas, covering the standard material in as simple a way as possible, using mean-free-path arguments when possible and identifying problem areas where received theory has either failed or has fallen short of expectations. Examples are provided by strong shock waves, ultrasonic waves (high Knudsen numbers), and transport across strong magnetic fields. Examples of problem areas provided by strong shock waves, ultrasonic waves (high Knudsen numbers), and transport across strong magnetic fields. One of the paradoxes arising in kinetic theory concerns the fluid pressure. Collisions are necessary for a fluid force to result, yet standard kinetic theory does not entail this, being satisfied to bypass Newton's equations by defining pressure as a momentum flux. This omission usually has no adverse consequences, but with increasing Knudsen number, it leads to errors. This text pays particular attention to pressure, explaining the importance of allowing for its collisional nature from the outset in developing kinetic theory.
This book provides a series of concise lectures on the fundamental
theories of statistical mechanics, carefully chosen examples and a
number of problems with complete solutions.
This pioneering book presents new models for the thermomechanical behavior of composite materials and structures taking into account internal physico-chemical transformations such as thermodecomposition, sublimation and melting at high temperatures (up to 3000 K). It is of great importance for the design of new thermostable materials and for the investigation of reliability and fire safety of composite structures. It also supports the investigation of interaction of composites with laser irradiation and the design of heat-shield systems. Structural methods are presented for calculating the effective mechanical and thermal properties of matrices, fibres and unidirectional, reinforced by dispersed particles and textile composites, in terms of properties of their constituent phases. Useful calculation methods are developed for characteristics such as the rate of thermomechanical erosion of composites under high-speed flow and the heat deformation of composites with account of chemical shrinkage. The author expansively compares modeling results with experimental data, and readers will find unique experimental results on mechanical and thermal properties of composites under temperatures up to 3000 K. Chapters show how the behavior of composite shells under high temperatures is simulated by the finite-element method and so cylindrical and axisymmetric composite shells and composite plates are investigated under local high-temperature heating. < The book will be of interest to researchers and to engineers designing composite structures, and invaluable to materials scientists developing advanced performance thermostable materials. |
You may like...
1 Recce: Volume 3 - Onsigbaarheid Is Ons…
Alexander Strachan
Paperback
|