![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Thermodynamics & statistical physics > Thermodynamics
Temperature and heat, entropy and order or disorder are key classical concepts of physics. These are challenged by searching matter under extreme conditions, such as high (relativistic) energy, strong acceleration or gravitation, or unusual complexity due to long range correlations. In our quest for quark matter all these conditions might occur simultaneously. This book, strongly motivated by the authors' everyday research experiences in the field of high-energy heavy-ion collisions, aims to bundle these challenges to modern physics. The main topic is at the heart of thermodynamics --the very concept of temperature, its use and extensions. New developments on this issue are both applications and foundations of non-extensive statistics, as well as concepts borrowed from gravity and string theory to describe the surprisingly statistical behavior of elementary matter at the highest accelerator energies of the world. The reader will benefit from bringing these new developments in one book together, by having the view of classical and modern concepts at the heart of physics across the problems related to high-energy, high acceleration and high complexity. After reviewing the classical approaches, the author discusses the dual-gravity and non-extensive statistical aspects of heavy-ion collisions, describing these experimental findings with the use of the concept of temperature."
This textbook introduces thermodynamics with a modern approach, starting from four fundamental physical facts (the atomic nature of matter, the indistinguishability of atoms and molecules of the same species, the uncertainty principle, and the existence of equilibrium states) and analyzing the behavior of complex systems with the tools of information theory, in particular with Shannon's measure of information (or SMI), which can be defined on any probability distribution. SMI is defined and its properties and time evolution are illustrated, and it is shown that the entropy is a particular type of SMI, i.e. the SMI related to the phase-space distribution for a macroscopic system at equilibrium. The connection to SMI allows the reader to understand what entropy is and why isolated systems follow the Second Law of Thermodynamics. The Second Llaw is also formulated for other systems, not thermally isolated and even open with respect to the transfer of particles. All the fundamental aspects of thermodynamics are derived and illustrated with several examples in the first part of the book. The second part addresses important applications of thermodynamics, covering phase transitions, mixtures and solutions (including the Kirkwood-Buff approach and solvation thermodynamics), chemical equilibrium, and the outstanding properties of water.This textbook is unique in two aspects. First, thermodynamics is introduced with a novel approach, based on information theory applied to macroscopic systems at equilibrium. It is shown that entropy is a particular case of Shannon's measure of information (SMI), and the properties and time evolution of the SMI are used to explain the Second Law of Thermodynamics. This represents a real breakthrough, as classical thermodynamics cannot explain entropy, nor clarify why systems should obey the Second Law. Second, this textbook offers the reader the possibility to get in touch with important and advanced applications of thermodynamics, to address the topics discussed in the second part of the book. Although they may go beyond the content of a typical introductory course on thermodynamics, some of them can be important in the curriculum chosen by the student. At the same time, they are of appealing interest to more advanced scholars.
'Ben-Naim convincingly argues that SMI not only gives a simpler and more broadly applicable definition of entropy, but also clears up much of the historical and modern confusion surrounding the second law. This book will interest any individual who wants to understand how SMI gives a clear definition of entroy.'CHOICE ConnectThis book discusses the proper definitions of entropy, the valid interpretation of entropy and some useful applications of the concept of entropy. Unlike many books which apply the concept of entropy to systems for which it is not even defined (such as living systems, black holes and the entire universe), these applications will help the reader to understand the meaning of entropy. It also emphasizes the limitations of the applicability of the concept of entropy and the Second Law of Thermodynamics. As with the previous books by the author, this book aims at a clear and mystery-free presentation of the central concept in thermodynamics - the entropy.In this book, the concepts of entropy and the Second Law are presented in a friendly, simple language. It is devoid of all kinds of fancy and pompous statements made by authors of popular science books who write on this subject.
'Ben-Naim convincingly argues that SMI not only gives a simpler and more broadly applicable definition of entropy, but also clears up much of the historical and modern confusion surrounding the second law. This book will interest any individual who wants to understand how SMI gives a clear definition of entroy.'CHOICE ConnectThis book discusses the proper definitions of entropy, the valid interpretation of entropy and some useful applications of the concept of entropy. Unlike many books which apply the concept of entropy to systems for which it is not even defined (such as living systems, black holes and the entire universe), these applications will help the reader to understand the meaning of entropy. It also emphasizes the limitations of the applicability of the concept of entropy and the Second Law of Thermodynamics. As with the previous books by the author, this book aims at a clear and mystery-free presentation of the central concept in thermodynamics - the entropy.In this book, the concepts of entropy and the Second Law are presented in a friendly, simple language. It is devoid of all kinds of fancy and pompous statements made by authors of popular science books who write on this subject.
Preface. From the preface to the Russian edition. Introduction. I: Properties of exact solutions of nondegenerate and degenerate ordinary differential equations. II: Direct methods for constructing exact solutions of semilinear parabolic equations. III: Singularities of nonsmooth solutions to quasilinear parabolic and hyperbolic equations. IV: Wave asymptotic solutions of degenerate semilinear parabolic and hyperbolic equations. V: Finite asymptotic solutions of degenerate equations. VI: Models for mass transfer processes. VII: The flow around a plate. References. Appendix: Justification of asymptotic solutions; S.A. Vakulenko.
This latest edition enhances the material of the first edition with a derivation of the value of the action for each of the Harrington-Shepard calorons/anticalorons that are relevant for the emergence of the thermal ground state. Also included are discussions of the caloron center versus its periphery, the role of the thermal ground state in U(1) wave propagation, photonic particle-wave duality, and calculational intricacies and book-keeping related to one-loop scattering of massless modes in the deconfining phase of an SU(2) Yang-Mills theory. Moreover, a derivation of the temperature-redshift relation of the CMB in deconfining SU(2) Yang-Mills thermodynamics and its application to explaining an apparent early re-ionization of the Universe are given. Finally, a mechanism of mass generation for cosmic neutrinos is proposed.
The sub series Ternary Alloy Systems of the Landolt Boernstein New Series provides reliable and comprehensive descriptions of the materials constitution, basedo ncritical intellectual evaluationso fall data available at the time and it critically weights the different findings, also with respect to their compatibility with today's edge binary phase diagrams. Selected are ternary systems of importance to alloy development and systems which gained in the recent years otherwise scie ntific interest. In one ternary materials system, however, one may find alloys for various applications , depending on the chosen composition. Reliable phase diagrams provide scientists and engineers with basic information of eminent importance for fundamental research and for the developmentand optimization of materials. So collections of such diagrams are extremely useful, if the data on which they are based have been subjected to critical evaluation, like in these volumes. Critical evaluation means: there where contradictory information is published data and conc lusions are being analyzed, broken down to the firm facts and re interpreted in the light of all present knowledge. Depending on the information available this can be a very difficult task to achieve. Criticaleval uations establish descripti ons of reliably known phase configurations and related data.
There is a great deal of research into wave propagation in random media, in such fields as applied mathematics, acoustics, optics, materials science, atomic physics and geophysics. This book provides theoretical and practical introductions at research level to topics such as localization of waves, band gap materials, random matrices, dielectric media, laser cooled atoms, wave scattering from rough surfaces, randomly layered media, seismic waves and imaging the earth.
This open access book describes the theory of transformation thermotics and its extended theories for the active control of macroscopic thermal phenomena of artificial systems, which is in sharp contrast to classical thermodynamics comprising the four thermodynamic laws for the passive description of macroscopic thermal phenomena of natural systems. This monograph consists of two parts, i.e., inside and outside metamaterials, and covers the basic concepts and mathematical methods, which are necessary to understand the thermal problems extensively investigated in physics, but also in other disciplines of engineering and materials. The analyses rely on models solved by analytical techniques accompanied by computer simulations and laboratory experiments. This monograph can not only be a bridge linking three first-class disciplines, i.e., physics, thermophysics, and materials science, but also contribute to interdisciplinary development.
This book aims to provide a lively working knowledge of the thermodynamic control of microscopic simulations, while summarizing the historical development of the subject, along with some personal reminiscences. Many computational examples are described so that they are well-suited to learning by doing. The contents enhance the current understanding of the reversibility paradox and are accessible to advanced undergraduates and researchers in physics, computation, and irreversible thermodynamics.
Throughout its previous four editions, "Combustion" has made a very complex subject both enjoyable and understandable to its student readers and a pleasure for instructors to teach. With its clearly articulated physical and chemical processes of flame combustion and smooth, logical transitions to engineering applications, this new edition continues that tradition. Greatly expanded end-of-chapter problem sets and new areas of combustion engineering applications make it even easier for students to grasp the significance of combustion to a wide range of engineering practice, from transportation to energy generation to environmental impacts. Combustion engineering is the study of rapid energy and mass
transfer usually through the common physical phenomena of flame
oxidation. It covers the physics and chemistry of this process and
the engineering applications including power generation in internal
combustion automobile engines and gas turbine engines. Renewed
concerns about energy efficiency and fuel costs, along with
continued concerns over toxic and particulate emissions, make this
a crucial area of engineering.
This second part of Continuum Thermodynamics is designed to match almost one-to-one the chapters of Part I. This is done so that the reader studying thermodynamics will have a deepened understanding of the subjects covered in Part I. The aims of the book are in particular: the illustration of basic features of some simple thermodynamical models such as ideal and viscous fluids, non-Newtonian fluids, nonlinear solids, interactions with electromagnetic fields, and diffusive porous materials. A further aim is the illustration of the above subjects by examples and simple solutions of initial and boundary problems as well as simple exercises to develop skills in the construction of interdisciplinary macroscopic models.
New processing methods govern the progress in physical-chemical technology. The potential of supercritical fluid methods is presented in a comprehensive way in this book. On the basis of a careful discussion of physical and chemical principles, the application of this method in process technology is demonstrated.
The book presents a clear and unique approach to statistical thermodynamics based on Shannon's measure of information, and provides applications to problems of interest in the life sciences.There is no other book which presents the fundamentals of statistical thermodynamics on Information theory, yet also includes many applications which usually do not feature in such textbooks.
The book presents a clear and unique approach to statistical thermodynamics based on Shannon's measure of information, and provides applications to problems of interest in the life sciences.There is no other book which presents the fundamentals of statistical thermodynamics on Information theory, yet also includes many applications which usually do not feature in such textbooks.
This book comprises select proceedings of the International Conference on Future Learning Aspects of Mechanical Engineering (FLAME 2018). The book gives an overview of recent developments in the field of thermal and fluid engineering, and covers theoretical and experimental fluid dynamics, numerical methods in heat transfer and fluid mechanics, different modes of heat transfer, multiphase transport and phase change, fluid machinery, turbo machinery, and fluid power. The book is primarily intended for researchers and professionals working in the field of fluid dynamics and thermal engineering.
For more than three decades, the US Standard Atmosphere has been used by researchers and professionals in many areas of aeronautics and atmospheric sciences. It is an idealized, all season average temperature profile of the earth's atmosphere. But today's modern day and sophisticated global applications require more extensive representations of the mean temperature profile. This book is a global augmentation of the climatological tropospheric temperature profiles in the Northern Hemisphere for different latitude belts and seasons. There are 72 mean temperature profile tables from the surface up to 10 kilometers in height that represent the four seasons for different latitudinal belts (5 Degrees N, 10 Degrees N , 15 Degrees N, 20 Degrees N, 25 Degrees N, 30 Degrees N, 35 Degrees N, 40 Degrees N, 45 Degrees N, 50 Degrees N, 55 Degrees N, 60 Degrees N, 65 Degrees N, 70 Degrees N, 75 Degrees N, 80 Degrees N, 85 Degrees N). The model is based on a neural network algorithm that uses archived radiosonde data, retrieved temperature profiles from remote sensors, and the solar insolation at the top of the earth's atmosphere. It is the most comprehensive book of mean seasonal tropospheric temperature profiles to date. It will be an indispensible reference to the aeronautic and meteorological industries worldwide as well as an easy-to-use guide for climatologists, meteorologists, aeronautic engineers, researchers and aviators.
These lecture notes provide a detailed treatment of the thermal energy storage and transport by conduction in natural and fabricated structures. Thermal energy in two carriers, i.e. phonons and electrons - are explored from first principles. For solid-state transport, a common Landauer framework is used for heat flow. Issues including the quantum of thermal conductance, ballistic interface resistance, and carrier scattering are elucidated. Bulk material properties, such as thermal and electrical conductivity, are derived from particle transport theories, and the effects of spatial confinement on these properties are established.
These lecture notes provide a detailed treatment of the thermal energy storage and transport by conduction in natural and fabricated structures. Thermal energy in two carriers, i.e. phonons and electrons - are explored from first principles. For solid-state transport, a common Landauer framework is used for heat flow. Issues including the quantum of thermal conductance, ballistic interface resistance, and carrier scattering are elucidated. Bulk material properties, such as thermal and electrical conductivity, are derived from particle transport theories, and the effects of spatial confinement on these properties are established.
This textbook on thermodynamics is intended primarily for honours and B. Sc students majoring in physical chemistry. However, students of physics, engineering and biochemistry will also find the book relevant to their studies.Its principal features are a much shorter presentation of the laws of thermodynamics than is customary, made possible by the definition of the thermodynamic scale of temperature using only one fixed point (the triple point of water) which immediately follows the Zeroth Law. The author's first exposure to thermodynamics revealed that its usefulness seemed to be mostly confined to the study of gases in equilibrium. Readers of this book will find that applications of thermodynamics to liquids and solids as well as gases are emphasized, and they will learn that thermodynamics can be applied to systems which are not in equilibrium.This book contains three learning aids. Fully worked out examples are included at appropriate places in the text, which also includes numerous exercises. These are designed to help the reader stop and think about what he or she has just read. Answers to the exercises are given at the end of each section and there are also problems at the end of each chapter which readers can work out on their own.
This textbook on thermodynamics is intended primarily for honours and B. Sc students majoring in physical chemistry. However, students of physics, engineering and biochemistry will also find the book relevant to their studies.Its principal features are a much shorter presentation of the laws of thermodynamics than is customary, made possible by the definition of the thermodynamic scale of temperature using only one fixed point (the triple point of water) which immediately follows the Zeroth Law. The author's first exposure to thermodynamics revealed that its usefulness seemed to be mostly confined to the study of gases in equilibrium. Readers of this book will find that applications of thermodynamics to liquids and solids as well as gases are emphasized, and they will learn that thermodynamics can be applied to systems which are not in equilibrium.This book contains three learning aids. Fully worked out examples are included at appropriate places in the text, which also includes numerous exercises. These are designed to help the reader stop and think about what he or she has just read. Answers to the exercises are given at the end of each section and there are also problems at the end of each chapter which readers can work out on their own.
Gets right to the point with step-by-step guidance on solving physics problems. Covers all topics in standard general physics courses in the same sequence. Keeps learning about physics fun and engaging through the story of dinosaurs being tested on their knowledge for a final challenge (deflecting an asteroid headed to Earth!). Enables the reader to quickly flip through and locate steps needed for a particular problem. Includes tons of easy to follow diagrams and worked solutions.
Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Clad in Crane Feathers' in R. Brown 'The point of a Pin'. van Gulik's The Chif1ese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics," "CFD," "completely integrable systems," "chaos, synergetics and large-scale order," which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics."
A small army of physicists, chemists, mathematicians, and engineers has joined forces to attack a classic problem, the "reversibility paradox", with modern tools. This book describes their work from the perspective of computer simulation, emphasizing the authors' approach to the problem of understanding the compatibility, and even inevitability, of the irreversible second law of thermodynamics with an underlying time-reversible mechanics. Computer simulation has made it possible to probe reversibility from a variety of directions and "chaos theory" or "nonlinear dynamics" has supplied a useful vocabulary and a set of concepts, which allow a fuller explanation of irreversibility than that available to Boltzmann or to Green, Kubo and Onsager. Clear illustration of concepts is emphasized throughout, and reinforced with a glossary of technical terms from the specialized fields which have been combined here to focus on a common theme.The book begins with a discussion, contrasting the idealized reversibility of basic physics against the pragmatic irreversibility of real life. Computer models, and simulation, are next discussed and illustrated. Simulations provide the means to assimilate concepts through worked-out examples. State-of-the-art analyses, from the point of view of dynamical systems, are applied to many-body examples from nonequilibrium molecular dynamics and to chaotic irreversible flows from finite-difference, finite-element, and particle-based continuum simulations. Two necessary concepts from dynamical-systems theory - fractals and Lyapunov instability - are fundamental to the approach.Undergraduate-level physics, calculus, and ordinary differential equations are sufficient background for a full appreciation of this book, which is intended for advanced undergraduates, graduates, and research workers. The generous assortment of examples worked out in the text will stimulate readers to explore the rich and fruitful field of study which links fundamental reversible laws of physics to the irreversibility surrounding us all.This expanded edition stresses and illustrates computer algorithms with many new worked-out examples, and includes considerable new material on shockwaves, Lyapunov instability and fluctuations.
This book presents a clear and readable description of one of the most mysterious concepts of physics: Entropy. It contains a self-learning kit that guides the reader in understanding the concepts of entropy. In the first part, the reader is asked to play the familiar twenty-Question game. Once the reader feels comfortable with playing this game and acquires proficiency in playing the game effectively (intelligently), he or she will be able to capture the elusive and used-to-be mysterious concept of entropy.There will be no more speculative or arbitrary interpretations, nor "older" or "modern" views of entropy. This book will guide readers in choosing their own interpretation of entropy. |
You may like...
Thermochemical Conversion Processes for…
Falah Alobaid, Jochen Stroehle
Hardcover
Handbook for Transversely Finned Tube…
Eugene Pis'Mennyi, Georgiy Polupan, …
Paperback
Chemical Thermodynamics: Principles and…
J. Bevan Ott, Juliana Boerio-Goates
Hardcover
R2,979
Discovery Miles 29 790
Advances in Heat Transfer, Volume 50
Ephraim M. Sparrow, John Patrick Abraham, …
Hardcover
R4,671
Discovery Miles 46 710
Computational Modeling of Intelligent…
Mostafa Baghani, Majid Baniassadi, …
Paperback
R3,933
Discovery Miles 39 330
Molecular Energetics - Consensed-Phase…
Jose A. Martinho Simoes, Manuel Minas da Piedade
Hardcover
R2,661
Discovery Miles 26 610
|