![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Thermodynamics & statistical physics > Thermodynamics
This book provides an introduction to the most important optical measurement techniques that are applied to engineering problems. It will also serve as a guideline to selecting and applying the appropriate technique to a particular problem. The text of the first edition has been completely revised and new chapters added to describe the latest developments in Phase-Doppler Velocimetry and Particle Image Velocimetry.The editors and authors have made a special effort not only to describe and to explain the fundamentals of measuring techniques, but also to provide guidelines for their application and to demonstrate the capabilities of the various methods.The book comes with a CD-ROM containing high-speed movies visualizing the methods described in the book.
Across the centuries, the development and growth of mathematical concepts have been strongly stimulated by the needs of mechanics. Vector algebra was developed to describe the equilibrium of force systems and originated from Stevin's experiments (1548-1620). Vector analysis was then introduced to study velocity fields and force fields. Classical dynamics required the differential calculus developed by Newton (1687). Nevertheless, the concept of particle acceleration was the starting point for introducing a structured spacetime. Instantaneous velocity involved the set of particle positions in space. Vector algebra theory was not sufficient to compare the different velocities of a particle in the course of time. There was a need to (parallel) transport these velocities at a single point before any vector algebraic operation. The appropriate mathematical structure for this transport was the connection. I The Euclidean connection derived from the metric tensor of the referential body was the only connection used in mechanics for over two centuries. Then, major steps in the evolution of spacetime concepts were made by Einstein in 1905 (special relativity) and 1915 (general relativity) by using Riemannian connection. Slightly later, nonrelativistic spacetime which includes the main features of general relativity I It took about one and a half centuries for connection theory to be accepted as an independent theory in mathematics. Major steps for the connection concept are attributed to a series of findings: Riemann 1854, Christoffel 1869, Ricci 1888, Levi-Civita 1917, WeyJ 1918, Cartan 1923, Eshermann 1950.
The authors are very glad to see the publication ofThermodynamicEquilibriaand Extrema in English and would like to express their gratitude to everybody who contributed to this end. The book is devoted to the analysis of attainability regions and partial equilibria in physicochemical and other systems. This analysis employs the extreme models ofclassicalequilibriumthermodynamics. Considerationisgiventotheproblemof choosing, from the set of equilibrium states belonging to the attainability regions, that equilibrium corresponding to the extreme values of a property of interest to a researcher. For example, one might desire to maximize the concentration of target products of a chemical reaction. The problem of coordinating thermodynamics and kinetics is very important in the analysis presented. Ataglance, itmayseemthattheobjectsofstudyinthermodynamics(thescience ofequilibria)andkinetics(thescienceofmotiontowardequilibrium)coincideonly in the case of complete and ?nal equilibrium. In reality, joint application of th- modynamics and kinetic models gives a clearer understanding of the regularities of the kinetics involved. Relativity of the notions of rest and motion was already ?rmly established in mechanics when the principles of equilibrium were formulated by Galilei, D'Alembert, and Lagrange. Historically, the theories of motion and equilibrium states are related. It is precisely the study of gas kinetics that led Clausius and Boltzmann to the main principles of thermodynamics. The systematic analysis of theseprinciplesintheclassicbookbyGibbs, OntheEquilibriumofHeterogeneous Substances 54], demonstrated the feasibility of substituting the models of rest for themodelsofmotionwhenstudyingvariousphysicochemicalprocesses.
Modulation Calorimetry reviews modulation techniques for measuring specific heat, thermal expansivity, temperature derivative of resistance, thermopower, and spectral absorptance. Owing to the periodic nature of the temperature oscillations, high sensitivity and excellent temperature resolution are peculiar to all these methods. The monograph presents the various methods of the modulation and of measuring the temperature oscillations. Important applications of the modulation techniques for studying physical phenomena in solids and liquids are considered in depth (equilibrium point defects, phase transitions, superconductors, liquid crystals, biological materials, relaxation phenomena in specific heat, and more).
This is a thoroughly revised version of the original book published in 1986. About half of the contents of the previous version remain essentially unchanged, and one quarter has been rewritten and updated. The rest consists of completely new and extended material. Recent research has focussed on new materials made through "molecular engineering," and computational materials science through ab initio electron structure calculations. Another trend is the ever growing interdisciplinary aspect of both basic and applied materials science. There is an obvious need for reviews that link well established results to the modern approaches. One purpose of this book is to provide such an overview in a specific field of materials science, namely thermophysical phenomena that are intimately connected with the lattice vibrations of solids. This includes, e.g., elastic properties and electrical and thermal transport. Furthermore, this book attempts to present the results in such a form that the reader can clearly see their domain of applicability, for instance if and how they depend on crystal structure, defects, applied pressure, crystal anisotropy etc. The level and presentation is such that the results can be immediately used in research. Graduate students in condensed matter physics, metallurgy,
inorganic chemistry or geophysical materials will benefit from this
book as will theoretical physicists and scientists in industrial
research laboratories.
This book presents a solution for direct and inverse heat conduction problems, discussing the theoretical basis for the heat transfer process and presenting selected theoretical and numerical problems in the form of exercises with solutions. The book covers one-, two- and three dimensional problems which are solved by using exact and approximate analytical methods and numerical methods. An accompanying CD-Rom includes computational solutions of the examples and extensive FORTRAN code.
Conversion of Coal-Fired Power Plant to Cogeneration and Combined-Cycle presents the methodology, calculation procedures and tools used to support enterprise planning for adapting power stations to cogeneration and combined-cycle forms. The authors analyze the optimum selection of the structure of heat exchangers in a 370 MW power block, the structure of heat recovery steam generators and gas turbines. Conversion of Coal-Fired Power Plant to Cogeneration and Combined-Cycle also addresses the problems of converting existing power plants to dual-fuel gas-steam combined-cycle technologies coupled with parallel systems. Conversion of Coal-Fired Power Plant to Cogeneration and Combined-Cycle is an informative monograph written for researchers, postgraduate students and policy makers in power engineering.
Within the framework of Jaynes' "Predictive Statistical Mechanics,"
this book presents a detailed derivation of an ensemble formalism
for open systems arbitrarily away from equilibrium. This involves a
large systematization and extension of the fundamental works and
ideas of the outstanding pioneers Gibbs and Boltzmann, and of
Bogoliubov, Kirkwood, Green, Mori, Zwanzig, Prigogine and Zubarev,
among others.
This book highlights the advances and trends in the safety analysis of sodium-cooled fast reactors, especially from the perspective of particle bed-related phenomena during core disruptive accidents. A sodium-cooled fast reactor (SFR) is an optimized candidate of the next-generation nuclear reactor systems. Its safety is a critical issue during its R&D process. The book elaborates on research progresses in particle bed-related phenomena in terms of the molten-pool mobility, the molten-pool sloshing motion, the debris bed formation behavior, and the debris bed self-leveling behavior. The book serves as a good reference for researchers, professionals, and postgraduate students interested in sodium-cooled fast reactors. Knowledge provided is also useful for those who are engaging in severe accident analysis for lead-cooled fast reactors and light water reactors.
This book is a modern presentation exploring the equations that govern heat and momentum transfer in laminar and turbulent boundary-layer flows with small temperature differences and buoyant flows. Numerical solutions are used to illustrate physical behavior and to demonstrate calculation methods. A large number of homework problems and several computer programs based on differential and integral methods are included. An accompanying CD-ROM contains computer programs which are of use to engineers and practitioners.
This book is dedicated to the recent developments in RET with the aim to explore polyatomic gas, dense gas and mixture of gases in non-equilibrium. In particular we present the theory of dense gases with 14 fields, which reduces to the Navier-Stokes Fourier classical theory in the parabolic limit. Molecular RET with an arbitrary number of field-variables for polyatomic gases is also discussed and the theory is proved to be perfectly compatible with the kinetic theory in which the distribution function depends on an extra variable that takes into account a molecule's internal degrees of freedom. Recent results on mixtures of gases with multi-temperature are presented together with a natural definition of the average temperature. The qualitative analysis and in particular, the existence of the global smooth solution and the convergence to equilibrium are also studied by taking into account the fact that the differential systems are symmetric hyperbolic. Applications to shock and sound waves are analyzed together with light scattering and heat conduction and the results are compared with experimental data. Rational extended thermodynamics (RET) is a thermodynamic theory that is applicable to non-equilibrium phenomena. It is described by differential hyperbolic systems of balance laws with local constitutive equations. As RET has been strictly related to the kinetic theory through the closure method of moment hierarchy associated to the Boltzmann equation, the applicability range of the theory has been restricted within rarefied monatomic gases. The book represents a valuable resource for applied mathematicians, physicists and engineers, offering powerful models for potential applications like satellites reentering the atmosphere, semiconductors and nano-scale phenomena.
Since a formulated concept of functionally graded materials (FGMs) was proposed in 1984 as a means of preparing thermal barrier materials, a coordinated research has been developed since 1986. The 125 papers presented here present state of the art research results and developments on FGM from the past decade. A wide spectra of topics are covered including design and modeling, fracture analysis, powder metallurgical processes, deposition and spray processes, reaction forming processes, novel processes, material evaluation for structural applications, organic and intelligent materials. Three reviews associated with national research programs on FGMs promoted in Japan and Germany, and the historical perspective of FGM research in Europe are presented as well. The resulting work is recommended to researchers, engineers and graduate school students in the fields of materials science and engineering, mechanical and medical engineering.
This book deals with models and model-building in classical and quantum physics; it relies on logic and the philosophy of science as well as on modern mathematics. The reader will also find vistas into the history of ideas. The philosophical analysis is based on the separation of syntax and semantics, which is at the root of Kolmogorov's theory of probability; recursive functions and algorithmic complexity are used to discuss entropy and randomness. Basic concepts are discussed, together with concrete physical models for phase transitions, scaling, renormalization semigroups, and the irreversible approach to equilibrium. The book is intended for mathematicians, physicists and philosophers of science, both researchers and graduate students.
The author investigates athermal fluctuation from the viewpoints of statistical mechanics in this thesis. Stochastic methods are theoretically very powerful in describing fluctuation of thermodynamic quantities in small systems on the level of a single trajectory and have been recently developed on the basis of stochastic thermodynamics. This thesis proposes, for the first time, a systematic framework to describe athermal fluctuation, developing stochastic thermodynamics for non-Gaussian processes, while thermal fluctuations are mainly addressed from the viewpoint of Gaussian stochastic processes in most of the conventional studies. First, the book provides an elementary introduction to the stochastic processes and stochastic thermodynamics. The author derives a Langevin-like equation with non-Gaussian noise as a minimal stochastic model for athermal systems, and its analytical solution by developing systematic expansions is shown as the main result. Furthermore, the a uthor shows a thermodynamic framework for such non-Gaussian fluctuations, and studies some thermodynamics phenomena, i.e. heat conduction and energy pumping, which shows distinct characteristics from conventional thermodynamics. The theory introduced in the book would be a systematic foundation to describe dynamics of athermal fluctuation quantitatively and to analyze their thermodynamic properties on the basis of stochastic methods.
This book presents a critical and modern analysis of the conceptual foundations of statistical mechanics as laid down in Boltzmann's works. The author emphasises the relation between microscopic reversibility and macroscopic irreversibility. Students will find a clear and detailed explanation of fundamental concepts such as equipartition, entropy and ergodicity. They will learn about Brownian motion, the modern treatment of the thermodynamic limit phase transitions, the microscopic and macroscopic theory of the coexistence of phases, statistical mechanics of stationary states, and fluctuations and dissipation in chaotic motions.
This book presents the ideas and industrial concepts in compact
heat exchanger technology that have been developed in the last 10
years or so. Historically, the development and application of
compact heat exchangers and their surfaces has taken place in a
piecemeal fashion in a number of rather unrelated areas,
principally those of the automotive and prime mover, aerospace,
cryogenic and refrigeration sectors. Much detailed technology,
familiar in one sector, progressed only slowly over the boundary
into another sector. This compartmentalisation was a feature both
of the user industries themselves, and also of the supplier, or
manufacturing industries. These barriers are now breaking down,
with valuable cross-fertilisation taking place.
This thesis represents the first systematic description of the two-phase flow problem. Two-phase flows of volatile fluids in confined geometries driven by an applied temperature gradient play an important role in a range of applications, including thermal management, such as heat pipes, thermosyphons, capillary pumped loops and other evaporative cooling devices. Previously, this problem has been addressed using a piecemeal approach that relied heavily on correlations and unproven assumptions, and the science and technology behind heat pipes have barely evolved in recent decades. The model introduced in this thesis, however, presents a comprehensive physically based description of both the liquid and the gas phase. The model has been implemented numerically and successfully validated against the available experimental data, and the numerical results are used to determine the key physical processes that control the heat and mass flow and describe the flow stability. One of the key contributions of this thesis work is the description of the role of noncondensables, such as air, on transport. In particular, it is shown that many of the assumptions used by current engineering models of evaporative cooling devices are based on experiments conducted at atmospheric pressures, and these assumptions break down partially or completely when most of the noncondensables are removed, requiring a new modeling approach presented in the thesis. Moreover, Numerical solutions are used to motivate and justify a simplified analytical description of transport in both the liquid and the gas layer, which can be used to describe flow stability and determine the critical Marangoni number and wavelength describing the onset of the convective pattern. As a result, the results presented in the thesis should be of interest both to engineers working in heat transfer and researchers interested in fluid dynamics and pattern formation.
This book presents new methods of numerical modelling of tube heat exchangers, which can be used to perform design and operation calculations of exchangers characterized by a complex flow system. It also proposes new heat transfer correlations for laminar, transition and turbulent flows. A large part of the book is devoted to experimental testing of heat exchangers, and methods for assessing the indirect measurement uncertainty are presented. Further, it describes a new method for parallel determination of the Nusselt number correlations on both sides of the tube walls based on the nonlinear least squares method and presents the application of computational fluid dynamic (CFD) modeling to determine the air-side Nusselt number correlations. Lastly, it develops a control system based on the mathematical model of the car radiator and compares this with the digital proportional-integral-derivative (PID) controller. The book is intended for students, academics and researchers, as well as for designers and manufacturers of heat exchangers.
The book contains, in a concise form, the foundations of both continuum mechanics and modern continuum thermodynamics. It originates from numerous courses delivered by the author during the last 25 years on both subjects at various universities. In contrast to other books on these subjects, it is reasonably self-contained. In addition, examples and remarks scattered throughout the text illustrate the chosen procedures or definitions. Simultaneously, they help to understand the applicability and the limitations of thermodynamical models. The book is an excellent introduction to more advanced monographs on the so-called rational extended thermodynamics.
The series Advances in Polymer Science presents critical reviews of the present and future trends in polymer and biopolymer science. It covers all areas of research in polymer and biopolymer science including chemistry, physical chemistry, physics, material science.The thematic volumes are addressed to scientists, whether at universities or in industry, who wish to keep abreast of the important advances in the covered topics.Advances in Polymer Science enjoys a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic, and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles, and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist, as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist.Review articles for the individual volumes are invited by the volume editors. Single contributions can be specially commissioned.Readership: Polymer scientists, or scientists in related fields interested in polymer and biopolymer science, at universities or in industry, graduate students
The Second Volume of Equilibrium between Phases of Matter, when compared with the First Volume, by H.A.J. Oonk and M.T. Calvet, published in 2008, amounts to an extension of subjects, and a deepening of understanding. In the first three sections of the text an extension is given of the theory on isobaric binary systems. The fourth section gives an account of the thermodynamic analyses of four isobaric binary key systems, highlighting the power of empirical, (exo)thermodynamic correlations. The fifth section is devoted to the thermodynamic description of ternary systems. The last three sections concentrate on the properties of materials, and the phase behaviour of systems under the conditions of high temperature and high pressure conditions that prevail in the interior of the Earth. A new equation of state is the subject of the sixth section. In the seventh section a move is made to statistical thermodynamics and vibrational models; the description of the systems has changed from mathematical to physical. The last section is on the system MgO SiO2, looked upon from a geophysical point of view. Throughout the work high priority is given to the thermodynamic assessment of experimental data; numerous end-of-section exercises and their solutions are included. Along with the First Volume, the work is useful for materials scientists and geophysicists as a reference text. Audience Volume II is a lecture book for postgraduate students in chemistry, chemical engineering, geology and metallurgy. It is highly useful as a recommended text for teachers and researchers in all fields of materials science. "
Reinvigorated by advances and insights the quantum theory of irreversible processes has recently attracted growing attention. This volume introduces the very basic concepts of semigroup dynamics of open quantum systems and reviews a variety of modern applications. Originally published as Volume 286 (1987) in Lecture in Physics, this volume has been newly typeset, revised and corrected and also expanded to include a review on recent developments.
One service mathematics has rendered the Et moi, .... si j'avait su comment en revenir, je human race. It has put common sense back n'y serais point aile.' where it belongs, on the topmost shelf next to Jules Verne the dusty canister labelled 'discarded nonsense'. Eric T. Bell The series is divergent; therefore we may be able to do something with it. O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and nonlineari ties abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sci ences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One ser vice topology has rendered mathematical physics .. .'; 'One service logic has rendered computer science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series." |
![]() ![]() You may like...
Hidden Markov Models - Estimation and…
Robert J Elliott, Lakhdar Aggoun, …
Hardcover
R4,576
Discovery Miles 45 760
Practical Industrial Data Networks…
Steve Mackay, Edwin Wright, …
Paperback
R1,540
Discovery Miles 15 400
Stochastic Partial Differential…
Helge Holden, Bernt Oksendal, …
Hardcover
R4,487
Discovery Miles 44 870
Spatial Synthesis - Computational Social…
Xinyue Ye, Hui Lin
Hardcover
R1,603
Discovery Miles 16 030
Differential Equations with…
Warren Wright, Dennis Zill
Paperback
![]()
|