![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Thermodynamics & statistical physics > Thermodynamics
Scientists and engineers are nowadays faced with the problem of optimizing complex systems subject to constraints from, ecology, economics, and thermodynamics. It is chiefly to the last of these that this volume is addressed. Intended for physicists, chemists, and engineers, the book uses examples from solar, thermal, mechanical, chemical, and environmental engineering to focus on the use of thermodynamic criteria for optimizing energy conversion and transmission. The early chapters centre on solar energy conversion, the second section discusses the transfer and conversion of chemical energy, while the concluding chapters deal with geometric methods in thermodynamics.
Kinetic theory is the link between the non--equilibrium statistical mechanics of many particle systems and macroscopic or phenomenological physics. Therefore much attention is paid in this book both to the derivation of kinetic equations with their limitations and generalizations on the one hand, and to the use of kinetic theory for the description of physical phenomena and the calculation of transport coefficients on the other hand. The book is meant for researchers in the field, graduate students and advanced undergraduate students. At the end of each chapter a section of exercises is added not only for the purpose of providing the reader with the opportunity to test his understanding of the theory and his ability to apply it, but also to complete the chapter with relevant additions and examples that otherwise would have overburdened the main text of the preceding sections. The author is indebted to the physicists who taught him Statistical Mechanics, Kinetic Theory, Plasma Physics and Fluid Mechanics. I gratefully acknowledge the fact that much of the inspiration without which this book would not have been possible, originated from what I learned from several outstanding teachers. In particular I want to mention the late Prof. dr. H. C. Brinkman, who directed my first steps in the field of theoretical plasma physics, my thesis advisor Prof. dr. N. G. Van Kampen and Prof. dr. A. N. Kaufman, whose course on Non-Equilibrium Statistical Mechanics in Berkeley I remember with delight.
This work provides an enormous contribution to the broad effort of modeling heat, mass and momentum transport in multi-physics problems with the development of new solution approaches. It re-visits the time-honored technique of network application using flow network solutions for all transport process components for a coupled modeling task. The book further provides as formulation of the conservation laws for mass, energy and momentum, specifically for the branches and nodes of transport networks using the combination of the Eulerian and Lagrangean modeling methods. With the extension of Bernoulli's original concept, a new solution is given for the flow field of viscous and compressible fluids as driven by the balance of mechanical energy, coupled to the thermodynamics of the transport system. Applicable to simple or large-scale tasks, the new model elements and methods are built on first principles. Throughout the work, the book provides original formulations, their mathematical derivations as well as applications in a numerical solution scheme.
This book is based on the results of our interest in the ?eld of ultrashort laser pulses interaction with matter. The aim of our monograph was to build the balanced description of the thermal transport phenomena generated by laser pulses shorter than the characteristic relaxation time. In the book we explore the matter on the quark, nuclear as well atomic scales. Also on the cosmic scale (Planck Era) the thermal disturbance shorter than the Planck time creates the new picture of the Universe. The mathematics, especially PDE, are the main tool in the description of the ultrashort thermal phenomena. Two types of the PDE: parabolic and hyperbolic partial di?erential equations are of special interest in the study of the thermal processes. We assume a moderate knowledge of basic Fourier and d'Alembert eq- tions. The scope of the book is deliberately limited to the background of the quantum mechanics equations: Schr] odinger and Klein-Gordon. In this book the attosecond laser pulses are the main source of the dist- bance of the thermal state of the matter. Recently, the attosecond laser pulses constitute a novel tool for probing processes taking place on the time scale of electron motion inside atoms. The research presented in this book appears to provide the basic tools and concepts for attosecond thermal dynamics. Nevertheless much research is still needed to make this emerging ?eld routinely applicable for a broad range of processes on atomic and subatomic scales."
Studies of surfaces and interactions between dissimilar materials or phases are vital for modern technological applications. Computer simulation methods are indispensable in such studies and this book contains a substantial body of knowledge about simulation methods as well as the theoretical background for performing computer experiments and analyzing the data. The book is self-contained, covering a range of topics from classical statistical mechanics to a variety of simulation techniques, including molecular dynamics, Langevin dynamics and Monte Carlo methods. A number of physical systems are considered, including fluids, magnets, polymers, granular media, and driven diffusive systems. The computer simulation methods considered include both standard and accelerated versions. The simulation methods are clearly related to the fundamental principles of thermodynamics and statistical mechanics.
From the reviews: "The book is excellent, and covers a very broad area (usually treated as separate topics) from a unified perspective. [ ] It will be very useful for both mathematicians and physicists." EMS Newsletter
Statistical mechanics deals with systems in which chaos and randomness reign supreme. The current theory is therefore firmly based on the equations of classical mechanics and the postulates of probability theory. This volume seeks to present a unified account of classical mechanical statistics, rather than a collection of unconnected reviews on recent results. To help achieve this, one element is emphasised which integrates various parts of the prevailing theory into a coherent whole. This is the hierarchy of the BBGKY equations, which enables a relationship to be established between the Gibbs theory, the liquid theory, and the theory of nonequilibrium phenomena. As the main focus is on the complex theoretical subject matter, attention to applications is kept to a minimum. The book is divided into three parts. The first part describes the fundamentals of the theory, embracing chaos in dynamic systems and distribution functions of dynamic systems. Thermodynamic equilibrium, dealing with Gibbs statistical mechanics and the statistical mechanics of liquids, forms the second part. Lastly, the third part concentrates on kinetics, and the theory of nonequilibrium gases and liquids in particular. Audience: This book will be of interest to graduate students and researchers whose work involves thermophysics, theory of surface phenomena, theory of chemical reactions, physical chemistry and biophysics.
The papers collected in this volume address all aspects related to thermofluidynamic processses in Diesel engines, from basic studies aiming to obtain a better understanding of the physical processes underlying diesel engine operation, to the real day-to-day problems associated with engine development. The topics covered comprise: Air management, injection systems, spray development and air interaction, combustion and pollutant formation, emission control strategies, and new concepts.
The book presents - based on the most recent research and development results worldwide - the perspectives of new propulsion concepts such as electric cars with batteries and fuel cells, and furthermore plug in hybrids with conventional and alternative fuels. The propulsion concepts are evaluated based on specific power, torque characteristic, acceleration behaviour, specific fuel consumption and pollutant emissions. The alternative fuels are discussed in terms of availability, production, technical complexity of the storage on board, costs, safety and infrastructure. The book presents summarized data about vehicles with electric and hybrid propulsion. The propulsion of future cars will be marked by diversity - from compact electric city cars and range extender vehicles for suburban and rural areas up to hybrid or plug in SUVs, Pick ups and luxury class automobiles.
Discover the many facets of non-equilibrium thermodynamics. The first part of this book describes the current thermodynamic formalism recognized as the classical theory. The second part focuses on different approaches. Throughout the presentation, the emphasis is on problem-solving applications. To help build your understanding, some problems have been analyzed using several formalisms to underscore their differences and their similarities.
This IMA Volume in Mathematics and its Applications DYNAMICAL ISSUES IN COMBUSTION THEORY is based on the proceedings of a workshop which was an integral part of the 1989-90 IMA program on "Dynamical Systems and their Applications." The aim of this workshop was to cross-fertilize research groups working in topics of current interest in combustion dynamics and mathematical methods applicable thereto. We thank Shui-Nee Chow, Martin Golubitsky, Richard McGehee, George R. Sell, Paul Fife, Amable Liiian and Foreman Williams for organizing the meeting. We especially thank Paul Fife, Amable Liiilin and Foreman Williams for editing the proceedings. We also take this opportunity to thank those agencies whose financial support made the workshop possible: the Army Research Office, the National Science Foundation and the Office of Naval Research. Avner Friedman Willard Miller, Jr. ix PREFACE The world ofcombustion phenomena is rich in problems intriguing to the math ematical scientist. They offer challenges on several fronts: (1) modeling, which involves the elucidation of the essential features of a given phenomenon through physical insight and knowledge of experimental results, (2) devising appropriate asymptotic and computational methods, and (3) developing sound mathematical theories. Papers in the present volume, which are based on talks given at the Workshop on Dynamical Issues in Combustion Theory in November, 1989, describe how all of these challenges have been met for particular examples within a number of common combustion scenarios: reactiveshocks, low Mach number premixed reactive flow, nonpremixed phenomena, and solid propellants."
Thermal processes are ubiquitous and an understanding of thermal
phenomena is essential for a complete description of the physics of
nanoparticles, both for the purpose of modeling the dynamics of the
particles and for the correct interpretation of experimental
data.
Con?gurational mechanics has attracted quite a bit of attention from various - search ?elds over the recent years/decades. Having been regarded in its infancy of the early years as a somewhat obscureand almost mystic ?eld of researchthat could only be understood by a happy few of insiders with a pronounced theoretical inc- nation, con?gurational mechanics has developed by now into a versatile tool that can be applied to a variety of problems. Since the seminal works of Eshelby a general notion of con?gurational - chanics has been developed and has successfully been applied to many pr- lems involving various types of defects in continuous media. The most pro- nent application is certainly the use of con?gurational forces in fracture - chanics. However, as con?gurational mechanics is related to arbitrary mat- ial inhomogeneities it has also very successfully been applied to many ma- rials science and engineering problems such as phase transitions and inelastic deformations. Also the modeling of materials with micro-structure evolution is an important ?eld, in which con?gurational mechanics can provide a better understanding of processes going on within the material. Besides these mechanically, physically, and chemically motivated applications, ideas from con?gurational mechanics are now increasingly applied within computational mechanics.
This book is the Proceedings of the First International Symposium for Science on Form. The Symposium was held on November 26 through 30, 1985 at the University of Tsukuba, Japan. It was organized by The Society for Science on Form, J::.!pan, and sponsored by the Foundation for Advancement of International Science (F AIS). The purpose of the Symposium was to discuss interdisciplinal science aspects of form. "Form", to exhibit its tremendous characters, depends on the material and the changes. But, it is the form that appears evident at once and endures. Form is absorbed from every field as media of information. Thirty years and more ago, interdisciplinal problems between earthethics and science were submitted to a symposium on Form in Nature and Art. The relation between form and function had been emphasized philosophically and psychologically. In this quarter century, information theory had exactly decided figures, electronic computer had easily calculated graphics, and laser hologram had completely contained the objective image and reconstructed it.
One of the main goals of optimal control theory is to provide a theoretical basis for choosing an appropriate controller for whatever system is under consideration by the researcher or engineer. Two popular norms that have proved useful are known as H-2 and H - infinity control. The first has been particularly applicable to problems arising in the aerospace industry. However, most industrial problems are badly modeled and the second norm proved to be more appropriate when the actual conditions of the problem did not conform to the stipulated conditions of the theory. This book takes the topic of H-infinity control as a point of departure and pursues an improved controller design which has been suggested in the mainstream of robust control. Its main theme, minimum entropy control, provides a means of trading off some of the features of other control problems. The book is aimed at research workers in networking systems as well as those in operator theory and linear multivariable control. The use of stochastic methods makes the book also of importance to the circuits and systems community. CONTENTS: Preface Introduction Preliminaries Induced Operator Norms Discrete-Time Entropy Connections With Related Optimal Control Problems Minimum Entropy Control Continuous-Time Entropy A. Proof of Theorem B. Proof of Theorem Bibliography Notation Index"
This book aims to present an information-theoretical approach to thermodynamics and its generalisations. On the one hand, it generalises the concept of information thermodynamics' to that of information dynamics' in order to stress applications outside thermal phenomena. On the other hand, it is a synthesis of the dynamics of state change and the theory of complexity, which provide a common framework to treat both physical and nonphysical systems together. Both classical and quantum systems are discussed, and two appendices are included to explain principal definitions and some important aspects of the theory of Hilbert spaces and operator algebras. The concept of higher-order temperatures is explained and applied to biological and linguistic systems. The theory of open systems is presented in a new, much more general form. Audience: This volume is intended mainly for theoretical and mathematical physicists, but also for mathematicians, experimental physicists, physical chemists, theoretical biologists, communication engineers, and all those interested in entropy and open systems. It can also be recommended as a supplementary text.
This book contains the courses given at the Fourth School on Statistical Physics and Cooperative Systems held at Santiago, Chile, from 12th to 16th December 1994. This School brings together scientists working on subjects related to recent trends in complex systems. Some of these subjects deal with dynamical systems, ergodic theory, cellular automata, symbolic and arithmetic dynamics, spatial systems, large deviation theory and neural networks. Scientists working in these subjects come from several aeras: pure and applied mathematics, non linear physics, biology, computer science, electrical engineering and artificial intelligence. Each contribution is devoted to one or more of the previous subjects. In most cases they are structured as surveys, presenting at the same time an original point of view about the topic and showing mostly new results. The expository text of Roberto Livi concerns the study of coupled map lattices (CML) as models of spatially extended dynamical systems. CML is one of the most used tools for the investigation of spatially extended systems. The paper emphasizes rigorous results about the dynamical behavior of one dimensional CML; i.e. a uniform real local function defined in the interval [0,1], interacting with its nearest neighbors in a one dimensional lattice.
In a certain sense this book has been twenty-five years in the writing, since I first struggled with the foundations of the subject as a graduate student. It has taken that long to develop a deep appreciation of what Gibbs was attempting to convey to us near the end of his life and to understand fully the same ideas as resurrected by E.T. Jaynes much later. Many classes of students were destined to help me sharpen these thoughts before I finally felt confident that, for me at least, the foundations of the subject had been clarified sufficiently. More than anything, this work strives to address the following questions: What is statistical mechanics? Why is this approach so extraordinarily effective in describing bulk matter in terms of its constituents? The response given here is in the form of a very definite point of view-the principle of maximum entropy (PME). There have been earlier attempts to approach the subject in this way, to be sure, reflected in the books by Tribus [Thermostat ics and Thermodynamics, Van Nostrand, 1961], Baierlein [Atoms and Information Theory, Freeman, 1971], and Hobson [Concepts in Statistical Mechanics, Gordon and Breach, 1971].
Physicists, when modelling physical systems with a large number of degrees of freedom, and statisticians, when performing data analysis, have developed their own concepts and methods for making the best' inference. But are these methods equivalent, or not? What is the state of the art in making inferences? The physicists want answers. More: neural computation demands a clearer understanding of how neural systems make inferences; the theory of chaotic nonlinear systems as applied to time series analysis could profit from the experience already booked by the statisticians; and finally, there is a long-standing conjecture that some of the puzzles of quantum mechanics are due to our incomplete understanding of how we make inferences. Matter enough to stimulate the writing of such a book as the present one. But other considerations also arise, such as the maximum entropy method and Bayesian inference, information theory and the minimum description length. Finally, it is pointed out that an understanding of human inference may require input from psychologists. This lively debate, which is of acute current interest, is well summarized in the present work.
This topical volume reviews applications of continuum mechanics to systems in geophysics and the environment. Part of the text is devoted to numerical simulations and modeling. The topics covered include soil mechanics and porous media, glacier and ice dynamics, climatology and lake physics, climate change as well as numerical algorithms. The book, written by well-known experts, addresses researchers and students interested in physical aspects of our environment.
I am very pleased and privileged to write a short foreword for the monograph of Dean Driebe: Fully Chaotic Maps and Broken Time Symmetry. Despite the technical title this book deals with a problem of fundamental importance. To appreciate its meaning we have to go back to the tragic struggle that was initiated by the work of the great theoretical physicist Ludwig Boltzmann in the second half of the 19th century. Ludwig Boltzmann tried to emulate in physics what Charles Darwin had done in biology and to formulate an evolutionary approach in which past and future would play different roles. Boltzmann's work has lead to innumerable controversies as the laws of classical mechanics (as well as the laws of quan tum mechanics) as traditionally formulated imply symmetry between past and future. As is well known, Albert Einstein often stated that "Time is an illusion." Indeed, as long as dynamics is associated with trajectories satisfy ing the equations of classical mechanics, explaining irreversibility in terms of trajectories appears, as Henri Poincare concluded, as a logical error. After a long struggle, Boltzmann acknowledged his defeat and introduced a probabil ity description in which all microscopic states are supposed to have the same a priori probability. Irreversibility would then be due to the imperfection of our observations associated only with the "macroscopic" state described by temperature, pressure and other similar parameters. Irreversibility then appears devoid of any fundamental significance. However today this position has become untenable."
This book contains the courses given at the Third School on Statistical Physics and Cooperative Systems held at Santiago, Chile, from 14th to 18th December 1992. The main idea of this periodic school was to bring together scientists work with recent trends in Statistical Physics. More precisely ing on subjects related related with non linear phenomena, dynamical systems, ergodic theory, cellular au tomata, symbolic dynamics, large deviation theory and neural networks. Scientists working in these subjects come from several areas: mathematics, biology, physics, computer science, electrical engineering and artificial intelligence. Recently, a very important cross-fertilization has taken place with regard to the aforesaid scientific and technological disciplines, so as to give a new approach to the research whose common core remains in statistical physics. Each contribution is devoted to one or more of the previous subjects. In most cases they are structured as surveys, presenting at the same time an original point of view about the topic and showing mostly new results. The expository text of Fran"
The present work reflects a multi-disciplinary effort to address the topic of confined hydrosystems developed with a cross-fertilization panel of physics, chemists, biologists, soil and earth scientists. Confined hydrosystems include all situations in natural settings wherein the extent of the liquid phase is limited so that the solid-liquid and/or liquid-air interfaces may be critical to the properties of the whole system. Primarily, this so-called "residual" solution is occluded in pores/channels in such a way that decreases its tendency to evaporation, and makes it long-lasting in arid (Earth deserts) and hyper-arid (Mars soils) areas. The associated physics is available from domains like capillarity, adsorption and wetting, and surface forces. However, many processes are still to understand due to the close relationship between local structure and matter properties, the subtle interplay between the host and the guest, the complex intermingling among static reactivity and migration pathway. Expert contributors from Israel, Russia, Europe and US discuss the behaviour of water and aqueous solutes at different scale, from the nanometric range of carbon nanotubes and nanofluidics to the regional scale of aquifers reactive flow in sedimentary basins. This scientific scope allowed the group of participants with very different background to tackle the confinement topic at different scales. The book is organized according to four sections that include: i) flow, from nano- to mega-scale; ii) ions, hydration and transport; iii) in-pores/channels cavitation; iv) crystallization under confinement. Most of contributions relates to experimental works at different resolution, interpreted through classic thermodynamics and intermolecular forces. Simulation techniques are used to explore the atomic scale of interfaces and the migration in the thinnest angstrom-wide channels. |
You may like...
Hypnobirth - Evidence, practice and…
Teri Gavin-Jones, Sandra Handford
Hardcover
R4,337
Discovery Miles 43 370
The February Man - Evolving…
Milton H. Erickson, Ernest Lawrence Rossi
Hardcover
R4,245
Discovery Miles 42 450
Recent Advances in Applications of…
Snehashish Chakraverty, Sanjeewa Perera
Hardcover
R2,654
Discovery Miles 26 540
Modelling and Simulation of Diffusive…
S.K. Basu, Naveen Kumar
Hardcover
R3,504
Discovery Miles 35 040
|