![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Thermodynamics & statistical physics > Thermodynamics
This updated edition of a widely admired text provides a user-friendly introduction to the field that requires only routine mathematics. The book starts with the elements of fluid mechanics and heat transfer, and covers a wide range of applications from fibrous insulation and catalytic reactors to geological strata, nuclear waste disposal, geothermal reservoirs, and the storage of heat-generating materials. As the standard reference in the field, this book will be essential to researchers and practicing engineers, while remaining an accessible introduction for graduate students and others entering the field. The new edition features 2700 new references covering a number of rapidly expanding fields, including the heat transfer properties of nanofluids and applications involving local thermal non-equilibrium and microfluidic effects.
- Newly updated. Addresses environmental issues as well as applications of thermodynamics to current and alternative energy sources and applications - Answers the most commonly asked questions relating to thermodynamics, such as the difference between entropy and enthalpy and the first name of Maxwell's demon - Precedes each group of related questions with an introductory overview - Emphasizes qualitative understanding - Includes many illustrative materials throughout to reinforce key concepts - Requires no prior background in the subject
This successful book gives an introduction to the basics of aerothermodynamics, as applied in particular to winged re-entry vehicles and airbreathing hypersonic cruise and acceleration vehicles. The book gives a review of the issues of transport of momentum, energy and mass, real-gas effects as well as inviscid and viscous flow phenomena. In this second, revised edition the chapters with the classical topics of aerothermodynamics more or less were left untouched. The access to some single topics of practical interest was improved. Auxiliary chapters were put into an appendix. The recent successful flights of the X-43A and the X-51A indicate that the dawn of sustained airbreathing hypersonic flight now has arrived. This proves that the original approach of the book to put emphasis on viscous effects and the aerothermodynamics of radiation-cooled vehicle surfaces was timely. This second, revised edition even more accentuates these topics. A new, additional chapter treats examples of viscous thermal surface effects. Partly only very recently obtained experimental and numerical results show the complexity of such phenomena (dependence of boundary-layer stability, skin friction, boundary-layer thicknesses, and separation on the thermal state of the surface) and their importance for airbreathing hypersonic flight vehicles, but also for any other kind of hypersonic vehicle.
Presents simplified but useful and practical equations that can be applied in estimating performance and design of energy-efficient systems in low-temperature systems or cryogenics Contains practical approaches and advanced design materials for insulation, shields/anchors, cryogen vessels/pipes, calorimeters, cryogenic heat switches, cryostats, current leads, and RF couplers Provides a comprehensive introduction to the necessary theory and models needed for solutions to common difficulties and illustrates the engineering examples with about 300 figures
Throughout its previous four editions, "Combustion" has made a very complex subject both enjoyable and understandable to its student readers and a pleasure for instructors to teach. With its clearly articulated physical and chemical processes of flame combustion and smooth, logical transitions to engineering applications, this new edition continues that tradition. Greatly expanded end-of-chapter problem sets and new areas of combustion engineering applications make it even easier for students to grasp the significance of combustion to a wide range of engineering practice, from transportation to energy generation to environmental impacts. Combustion engineering is the study of rapid energy and mass
transfer usually through the common physical phenomena of flame
oxidation. It covers the physics and chemistry of this process and
the engineering applications including power generation in internal
combustion automobile engines and gas turbine engines. Renewed
concerns about energy efficiency and fuel costs, along with
continued concerns over toxic and particulate emissions, make this
a crucial area of engineering.
Calculations in Chemical Kinetics for Undergraduates aims to restore passion for problem solving and applied quantitative skills in undergraduate chemistry students. Avoiding complicated chemistry jargon and providing hints and step wise explanations in every calculation problem, students are able to overcome their fear of handling mathematically applied problems in physical chemistry. This solid foundation in their early studies will enable them to connect fundamental theoretical chemistry to real experimental applications as graduates. Additional Features Include: Contains quantitative problems from popular physical chemistry references. Provides step by step explanations are given in every calculation problem. Offers hints to certain problems as "points to note" to enable student comprehension. Includes solutions for all questions and exercises. This book is a great resource for undergraduate chemistry students however, the contents are rich and useful to even the graduate chemist that has passion for applied problems in physical chemistry of reaction Kinetics.
Calculations in Chemical Kinetics for Undergraduates aims to restore passion for problem solving and applied quantitative skills in undergraduate chemistry students. Avoiding complicated chemistry jargon and providing hints and step wise explanations in every calculation problem, students are able to overcome their fear of handling mathematically applied problems in physical chemistry. This solid foundation in their early studies will enable them to connect fundamental theoretical chemistry to real experimental applications as graduates. Additional Features Include: Contains quantitative problems from popular physical chemistry references. Provides step by step explanations are given in every calculation problem. Offers hints to certain problems as "points to note" to enable student comprehension. Includes solutions for all questions and exercises. This book is a great resource for undergraduate chemistry students however, the contents are rich and useful to even the graduate chemist that has passion for applied problems in physical chemistry of reaction Kinetics.
Remains accessible but incorporates a rigorous mathematical treatment with clarity and emphasizing a contemporary style and a rejuvenated approach Presents a student-friendly and self-contained structure Balances theory and worked examples
This book highlights the design of a new type of solar chimney that has lower height and bigger diameter, and discusses its applications. The bigger diameter chimneys are introduced showing cold inflow phenomena that significantly reduced the performance of solar chimney. The cold inflow-free operation of solar chimneys restores the draft losses and enhances the performance of the solar chimneys. Numerical and experimental investigation results will be presented to highlight the performance of cold inflow-free solar chimney performance. In addition, this book covers the important basic design parameters that affect the design of solar chimney for different applications, mainly, solar chimney-assisted ventilation for passive cooling and power generation system.
This graduate-level text gives a self-contained exposition of fundamental topics in modern equilibrium and nonequilibrium statistical thermodynamics. The text follows a balanced approach between the macroscopic (thermodynamic) and microscopic (statistical) points of view. The first half of the book deals with equilibrium thermodynamics and statistical mechanics. In addition to standard subjects, the reader will find a detailed account of broken symmetries, critical phenomena and the renormalization group, as well as an introduction to numerical methods. The second half of the book is devoted to nonequilibrium phenomena, first following a macroscopic approach, with hydrodynamics as an important example. Kinetic theory receives a thorough treatment through analysis of the Boltzmann-Lorentz model and the Boltzmann equation. The book concludes with general nonequilibrium methods such as linear response, projection method and the Langevin and Fokker-Planck equations, including numerical simulations. This advanced textbook will be of interest to graduate students and researchers in physics.
This monograph disentangles the law of motive force, a fundamental law of nature that can be accommodated as an addition to the existing laws of thermodynamics. This unmistakable and remarkable tendency of nature is equally applicable to all other branches of studies. The law of motive force was discovered in 1989 by the author of this book, Professor Pramanick, who reports here various applications of the law in the area ofthermodynamics, heat transfer, fluid mechanics and solid mechanics and shows how, by applying the law of motive force, it is possible to solve analytically century old unsolved problems. This book offers a comprehensive account of the law of motive force and its relation to other laws and principles such as the generalized conservation principle, variational formulation, Fermat s principle, Bejan s constructal law, entropy generation minimization, Bejan s method of intersecting asymptotes and equipartition principle. Furthermore, the author addresses here some interrelated fundamental problems of contemporary interest, especially to thermodynamicists and provides exact solutions to these problems, by combining analytical methods, physical reasoning and the proposed law of motive force. This book is a must-read for both students and researchers in exact as well as non-exact sciences and at the same time, a pleasant learning experience for any novice. The first chapter proposes the law of motive force and establishes its relation to the other laws and principles such as the generalized conservation principle, variational formulation, Fermat s principle, Bejan s constructal law, entropy generation minimization, Bejan s method of intersecting asymptotes and equipartition principle. The second chapter presents Schmidt s intuitive criterion for fin design by employing the law of motive force alone. The third chapter provides an elegant solution to a classically unsolved fundamental issue of thermal science, the generalization of Pohlhausen s problem of heat transfer from a flat plate, by applying the law of motive force. The fourth chapter is a theoretical excursus of hydraulic jump for the first time deploying the law of motive force. The fifth chapter inculcates the law of motive force to establish the dendritic structure of nature with reference to a thermoelectric device. In the light of law of motive force the sixth and last chapter finally integrates finite-time thermodynamics with Bejan s constructal law.
describes more than thirty Physics practicals at high school and undergraduate level. There's background information on each one, a description of the equipment needed, and how the experiment is performed. Uniquely, for those without access to a real laboratory, the book gives you access to highly detailed 3d simulations of all the experiments.
- It provides a rigorous mathematical and physical basis to techniques that are often introduced on empirical basis - While the book covers a broad range of techniques, it starts at a basic theoretical level. This gives the book a strong foundation and makes it accessible to students from various backgrounds. - Has a computational focus unlike many competing titles
Gets right to the point with step-by-step guidance on solving physics problems. Covers all topics in standard general physics courses in the same sequence. Keeps learning about physics fun and engaging through the story of dinosaurs being tested on their knowledge for a final challenge (deflecting an asteroid headed to Earth!). Enables the reader to quickly flip through and locate steps needed for a particular problem. Includes tons of easy to follow diagrams and worked solutions.
The term transport phenomena is used to describe processes in which mass, momentum, energy and entropy move about in matter. Advances in Transport Phenomena provide state-of-the-art expositions of major advances by theoretical, numerical and experimental studies from a molecular, microscopic, mesoscopic, macroscopic or megascopic point of view across the spectrum of transport p- nomena, from scientific enquiries to practical applications. The annual review series intends to fill the information gap between regularly published journals and university-level textbooks by providing in-depth review articles over a broader scope than in journals. The authoritative articles, contributed by international- leading scientists and practitioners, establish the state of the art, disseminate the latest research discoveries, serve as a central source of reference for fundamentals and applications of transport phenomena, and provide potential textbooks to senior undergraduate and graduate students. The series covers mass transfer, fluid mechanics, heat transfer and thermo- namics. The 2009 volume contains the four articles on biomedical, environmental and nanoscale transports. The editorial board expresses its appreciation to the c- tributing authors and reviewers who have maintained the standard associated with Advances in Transport Phenomena. We also would like to acknowledge the efforts of the staff at Springer who have made the professional and attractive pr- entation of the volume. Serial Editorial Board Editor-in-Chief Professor L. Q. Wang The University of Hong Kong, Hong Kong; lqwang@hku. hk Editors Professor A. R. Balakrishnan Indian Institute of Technology Madras, India Professor A.
This volume is a compilation of carefully selected questions at the PhD qualifying exam level, including many actual questions from Columbia University, University of Chicago, MIT, State University of New York at Buffalo, Princeton University, University of Wisconsin and the University of California at Berkeley over a twenty-year period. Topics covered in this book include the laws of thermodynamics, phase changes, Maxwell-Boltzmann statistics and kinetic theory of gases.This latest edition has been updated with more problems and solutions and the original problems have also been modernized, excluding outdated questions and emphasizing those that rely on calculations. The problems range from fundamental to advanced in a wide range of topics on thermodynamics and statistical physics, easily enhancing the student's knowledge through workable exercises. Simple-to-solve problems play a useful role as a first check of the student's level of knowledge whereas difficult problems will challenge the student's capacity on finding the solutions.
This volume is a compilation of carefully selected questions at the PhD qualifying exam level, including many actual questions from Columbia University, University of Chicago, MIT, State University of New York at Buffalo, Princeton University, University of Wisconsin and the University of California at Berkeley over a twenty-year period. Topics covered in this book include the laws of thermodynamics, phase changes, Maxwell-Boltzmann statistics and kinetic theory of gases.This latest edition has been updated with more problems and solutions and the original problems have also been modernized, excluding outdated questions and emphasizing those that rely on calculations. The problems range from fundamental to advanced in a wide range of topics on thermodynamics and statistical physics, easily enhancing the student's knowledge through workable exercises. Simple-to-solve problems play a useful role as a first check of the student's level of knowledge whereas difficult problems will challenge the student's capacity on finding the solutions.
The simulation of turbulent reacting flows, connected with environmental protection and the design of chemical and mechanical processes, is increasingly important. Statistical Mechanics of Turbulent Flows presents a modern overview of basic ways to calculate such flows. It discusses the fundamental problems related to the use of basic equations and their modifications. Special emphasis is placed on the discussion of very promising statistical methods which provide solutions to these problems by models for the underlying stochastic physics of turbulent reacting flows. Their foundations and important new developments up through current challenges are systematically explained. Students and researchers in atmospheric sciences and oceanography, mechanical and chemical engineering and applied mathematics and physics may use Statistical Mechanics of Turbulent Flows as a guide to solve many problems related, e.g. to the assessment of complex atmospheric chemistry, chemical reactor processes, turbulent combustion, and multi-phase flows.
The revised second edition of this practical book reviews the fundamentals of cryogenic liquid behaviour in small and large scale storage systems. The text is based on research findings on the convective and evaporative behaviour of cryogenic fluids, aimed at improving the design, construction and operation of low-loss cryogenic liquid storage systems, with a view to minimising cost and improving operational safety. Since the first edition was published in 2006, the breadth of cryogenic applications and the modelling of cryogenic fluid dynamics (CFD) have expanded in several directions. In this second edition, most chapters have been extended to introduce discussions of these new applications and their safety and energy economy. These include advances in the modelling of CFD required in, for example, the design of miniature cryocoolers and condensers and reboilers, large-scale cryogenic liquid mixture properties and their stability, and the understanding that hazards and safety problems in the public domain increase with the scaling up of cryogenic systems. With helpful summaries at the end of each chapter, the book is an essential reference for anyone working on the design and operation of cryogenic liquid storage and transportation systems.
"Fundamental Aspects of Plasma Chemical Physics: Transport "develops basic and advanced concepts of plasma transport to the modern treatment of the Chapman-Enskog method for the solution of the Boltzmann transport equation. The book invites the reader to consider actual problems of the transport of thermal plasmas with particular attention to the derivation of diffusion- and viscosity-type transport cross sections, stressing the role of resonant charge-exchange processes in affecting the diffusion-type collision calculation of viscosity-type collision integrals. A wide range of topics is then discussed including (1) the effect of non-equilibrium vibrational distributions on the transport of vibrational energy, (2) the role of electronically excited states in the transport properties of thermal plasmas, (3) the dependence of transport properties on the multitude of Saha equations for multi-temperature plasmas, and (4) the effect of the magnetic field on transport properties. Throughout the book, worked examples are provided to clarify concepts and mathematical approaches. This book is the second of a series of three published by the Bari group on fundamental aspects of plasma chemical physics. The first book, "Fundamental Aspects of Plasma Chemical Physics: Thermodynamics," is dedicated to plasma thermodynamics; and the third, "Fundamental Aspects of Plasma Chemical Physics: Kinetics," deals with plasma kinetics.
This book is devoted to the problems of oxidation chemical reactions and addresses bimodal reaction sequences. Chemical reactions of oxidation, occurring under certain conditions and in multicomponent systems are complex processes. The process of the oxidation essentially changes in the presence and contact of the solid substances with reactants. The role of solid substances and the appearance of this phenomenon in oxidation reaction are discussed. The reader will understand the "driving forces" of this phenomenon and apply it in practice. Written for chemists, physicists, biologists and engineers working in the domain of oxidation reactions. Key Selling Features: Covers the historical background, modern state of the art, and perspectives in investigations of the coupling between heterogeneous and homogeneous reactions Discusses the feasible pathways of the coupling of heterogeneous and homogeneous reactions in oxidation in man-made and natural chemical systems Addresses the abundance, peculiarities and mechanisms of the bimodal reaction sequences in oxidation with dioxygen in recent decades Discusses the existence of the bimodal reaction sequences in chemical systems investigations in atmospheric chemistry and heterogeneous photocatalysis Presented in a simple concise style, accessible for both specialists and non-specialists
This textbook provides an accessible introduction to various energy transformation technologies and their influences on the environment. Here the energy transformation is understood as any physical process induced by humans, in which energy is intentionally transformed from one form to another. This book provides an accessible introduction to the subject: covering the theory, principles of design, operation, and efficiency of the systems in addition to discerning concepts such as energy, entropy, exergy, efficiency, and sustainability. It is not assumed that readers have any previous exposure to such concepts as laws of thermodynamics, entropy, exergy, fluid mechanics or heat transfer, and is therefore an ideal textbook for advanced undergraduate students. Key features: Represents a complete source of information on sustainable energy transformation systems and their externalities. Includes all existing and major emerging technologies in the field. Chapters include numerous examples and problems for further learning opportunities.
This textbook provides an accessible introduction to various energy transformation technologies and their influences on the environment. Here the energy transformation is understood as any physical process induced by humans, in which energy is intentionally transformed from one form to another. This book provides an accessible introduction to the subject: covering the theory, principles of design, operation, and efficiency of the systems in addition to discerning concepts such as energy, entropy, exergy, efficiency, and sustainability. It is not assumed that readers have any previous exposure to such concepts as laws of thermodynamics, entropy, exergy, fluid mechanics or heat transfer, and is therefore an ideal textbook for advanced undergraduate students. Key features: Represents a complete source of information on sustainable energy transformation systems and their externalities. Includes all existing and major emerging technologies in the field. Chapters include numerous examples and problems for further learning opportunities.
Discusses advances in the computation of phase diagrams Offers expanded treatment of eutectic solidification with practical examples and new coverage of ternary phase diagrams, covering the concepts of orthoequilibrium and paraequilibrium Updates discussion of bainite transformation to reflect current opinions Includes new case studies covering grain refiners in aluminium alloys, additive manufacturing, thin film growth, important aerospace Al-Li alloys, and quenched and partitioned steels, and metastable austenitic stainless steels. Each chapter now begins with a list of key concepts, includes simpler illustrative exercises with relevance to real practical applications, and references to scientific publications updated to reflect experimental and computational advances in metallurgy
Presents a clear path to developing quantitative multi-phase and multi-component phase field models for solidification and other phase transformation kinetics based on practical grand potential functional Derives explicitly and discusses the quantitative nature of the model formulations through matched interface asymptotic analysis Explores a framework for quantitative treatment of rapid solidification to control solute trapping and solute drag dynamics |
You may like...
Computational Modeling of Intelligent…
Mostafa Baghani, Majid Baniassadi, …
Paperback
R3,933
Discovery Miles 39 330
Advances in Heat Transfer, Volume 50
Ephraim M. Sparrow, John Patrick Abraham, …
Hardcover
R4,671
Discovery Miles 46 710
Applied Micromechanics of Complex…
Majid Baniassadi, Mostafa Baghani, …
Paperback
R4,308
Discovery Miles 43 080
Waste Biorefineries - Advanced Design…
Jinyue Yan, Chaudhary Awais Salman
Paperback
R3,239
Discovery Miles 32 390
Chemical Thermodynamics: Principles and…
J. Bevan Ott, Juliana Boerio-Goates
Hardcover
R2,979
Discovery Miles 29 790
Power System Frequency Control…
Dillip Kumar Mishra, Lili, …
Paperback
R3,232
Discovery Miles 32 320
|