![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Thermodynamics & statistical physics > Thermodynamics
This practical introduction to the analysis of data collected from reliability studies offers clear, detailed explanations of the best and most up-to-date techniques available. Topics include survival analysis with covariates, the assessment of systems performance, reliability growth models, dependency (which encompasses both engineering and statistical approaches), and practical aspects of analysis. A wealth of interesting case studies appear throughout the text, lending "real-world" examples to the more theoretical discussions. Throughout, the authors stress the need for investigators to understand the background and nature of their data if they are to select the most appropriate analysis method. They also provide in-depth treatments of the mathematical and statistical bases underlying each technique. Accessible and comprehensive, the book will be welcomed by students, professionals, and statisticians who are interested in the practical aspects of reliability data analysis.
'Hugely readable and entertaining' JIM AL-KHALILI 'An accessible and crystal-clear portrait of this discipline's breadth, largely told through its history' PHIL BALL, PHYSICS WORLD Einstein's Fridge tells the story of how scientists uncovered the least known and yet most consequential of all the sciences, and learned to harness the power of heat and ice. The laws of thermodynamics govern everything from the behaviour of atoms to that of living cells, from the engines that power our world to the black hole at the centre of our galaxy. Not only that, but thermodynamics explains why we must eat and breathe, how the lights come on, and ultimately how the universe will end. The people who decoded its laws came from every branch of the sciences - they were engineers, physicists, chemists, biologists, cosmologists and mathematicians. Their discoveries, set over two hundred years, kick-started the industrial revolution, changed the course of world wars and informed modern understanding of black holes. This book captures the thrill of discovery and the power of revolutionary science to change the world forever.
This book explores applications of computational intelligence in key and emerging fields of engineering, especially with regard to condition monitoring and fault diagnosis, inverse problems, decision support systems and optimization. These applications can be beneficial in a broad range of contexts, including: water distribution networks, manufacturing systems, production and storage of electrical energy, heat transfer, acoustic levitation, uncertainty and robustness of infinite-dimensional objects, fatigue failure prediction, autonomous navigation, nanotechnology, and the analysis of technological development indexes. All applications, mathematical and computational tools, and original results are presented using rigorous mathematical procedures. Further, the book gathers contributions by respected experts from 22 different research centers and eight countries: Brazil, Cuba, France, Hungary, India, Japan, Romania and Spain. The book is intended for use in graduate courses on applied computation, applied mathematics, and engineering, where tools like computational intelligence and numerical methods are applied to the solution of real-world problems in emerging areas of engineering.
In this unique book, the reader is invited to experience the joy of appreciating something which has eluded understanding for many years - entropy and the Second Law of Thermodynamics. The book has a two-pronged message: first, that the second law is not infinitely incomprehensible as commonly stated in most textbooks on thermodynamics, but can, in fact, be comprehended through sheer common sense; and second, that entropy is not a mysterious quantity that has resisted understanding but a simple, familiar and easily comprehensible concept.Written in an accessible style, the book guides the reader through an abundance of dice games and examples from everyday life. The author paves the way for readers to discover for themselves what entropy is, how it changes, and, most importantly, why it always changes in one direction in a spontaneous process.In this new edition, seven simulated games are included so that the reader can actually experiment with the games described in the book. These simulated games are meant to enhance the readers' understanding and sense of joy upon discovering the Second Law of Thermodynamics.
The principal message of this book is that thermodynamics and statistical mechanics will benefit from replacing the unfortunate, misleading and mysterious term "entropy" with a more familiar, meaningful and appropriate term such as information, missing information or uncertainty. This replacement would facilitate the interpretation of the "driving force" of many processes in terms of informational changes and dispel the mystery that has always enshrouded entropy.It has been 140 years since Clausius coined the term "entropy"; almost 50 years since Shannon developed the mathematical theory of "information" - subsequently renamed "entropy". In this book, the author advocates replacing "entropy" by "information", a term that has become widely used in many branches of science.The author also takes a new and bold approach to thermodynamics and statistical mechanics. Information is used not only as a tool for predicting distributions but as the fundamental cornerstone concept of thermodynamics, held until now by the term "entropy".The topics covered include the fundamentals of probability and information theory; the general concept of information as well as the particular concept of information as applied in thermodynamics; the re-derivation of the Sackur-Tetrode equation for the entropy of an ideal gas from purely informational arguments; the fundamental formalism of statistical mechanics; and many examples of simple processes the "driving force" for which is analyzed in terms of information.
The principal message of this book is that thermodynamics and statistical mechanics will benefit from replacing the unfortunate, misleading and mysterious term "entropy" with a more familiar, meaningful and appropriate term such as information, missing information or uncertainty. This replacement would facilitate the interpretation of the "driving force" of many processes in terms of informational changes and dispel the mystery that has always enshrouded entropy.It has been 140 years since Clausius coined the term "entropy"; almost 50 years since Shannon developed the mathematical theory of "information" - subsequently renamed "entropy". In this book, the author advocates replacing "entropy" by "information", a term that has become widely used in many branches of science.The author also takes a new and bold approach to thermodynamics and statistical mechanics. Information is used not only as a tool for predicting distributions but as the fundamental cornerstone concept of thermodynamics, held until now by the term "entropy".The topics covered include the fundamentals of probability and information theory; the general concept of information as well as the particular concept of information as applied in thermodynamics; the re-derivation of the Sackur-Tetrode equation for the entropy of an ideal gas from purely informational arguments; the fundamental formalism of statistical mechanics; and many examples of simple processes the "driving force" for which is analyzed in terms of information.
This book provides a solid foundation in the principles of heat and mass transfer and shows how to solve problems by applying modern methods. The basic theory is developed systematically, exploring in detail the solution methods to all important problems. The revised second edition incorporates state-of-the-art findings on heat and mass transfer correlations. The book will be useful not only to upper- and graduate-level students, but also to practicing scientists and engineers. Many worked-out examples and numerous exercises with their solutions will facilitate learning and understanding, and an appendix includes data on key properties of important substances.
In this unique book, Arieh Ben-Naim invites the reader to experience the joy of appreciating something which has eluded understanding for many years -- entropy and the Second Law of Thermodynamics. The book has a two-pronged message: first, that the Second Law is not "infinitely incomprehensible" as commonly stated in textbooks of thermodynamics but can, in fact, be comprehended through sheer common sense; and second, that entropy is not a mysterious quantity that has "resisted understanding" but a simple, familiar and easily comprehensible concept. Written in an accessible style, the book guides the reader through an abundance of dice games and examples from everyday life. The author paves the way for readers to discover for themselves what entropy is, how it changes, and most importantly, why it always changes in one direction in a spontaneous process.
This book is an introductory text on fundamental aspects of combustion including thermodynamics, heat and mass transfer and chemical kinetics which are used to systematically derive the basic concepts of combustion. Apart from the fundamental aspects, many of the emerging topics in the field like microscale combustion, combustion dynamics, oxy-fuel combustion and combustion diagnostics are also covered in the book. This would help the beginners in the subject to get initiated to the state of the art topics. Key Features: Coverage of the essential aspects of combustion engineering suitable for both beginners and practicing professionals Topics like entropy generation, microscale combustion, combustion diagnostics, second law-based analysis exclusive to the title Balanced treatment of thermodynamics, transport phenomena and chemical kinetics Discussion on state of the art techniques in combustion diagnostics Illustrates combustion of gaseous, liquid and solid fuels along with emission of pollutants and greenhouse gases
Chemical Thermodynamics for Industry presents the latest developments in applied thermodynamics and highlights the role of thermodynamics in the chemical industry. Written by leading experts in the field, Chemical Thermodynamics for Industry covers the latest developments in traditional areas such as calorimetry, microcalorimetry, transport properties, crystallization, adsorption, electrolyte systems and transport fuels, It highlights newly established areas such as multiphase modeling, reactive distillation, non-equilibrium thermodynamics and spectro-calorimetry. It also explores new ways of treating old technologies as well as new and potentially important areas such as ionic liquids, new materials, ab-initia quantum chemistry, nano-particles, polymer recycling, clathrates and the economic value of applied thermodynamics. This book is aimed not only at those working in a specific area of chemical thermodynamics but also at the general chemist, the prospective researcher and those involved in funding chemical research.
This textbook concerns thermal properties of bulk matter and is aimed at advanced undergraduate or first-year graduate students in a range of programs in science or engineering. It provides an intermediate level presentation of statistical thermodynamics for students in the physical sciences (chemistry, nanosciences, physics) or related areas of applied science/engineering (chemical engineering, materials science, nanotechnology engineering), as they are areas in which statistical mechanical concepts play important roles. The book enables students to utilize microscopic concepts to achieve a better understanding of macroscopic phenomena and to be able to apply these concepts to the types of sub-macroscopic systems encountered in areas of nanoscience and nanotechnology.
For almost 20 years the author has conducted research on both macroscopic and molecular theories. The results of his investigation, which can be found in this work, are that irreversible thermodynamics and kinetic theory of matter are not separable especially for nonlinear irreversible processes occurring in systems removed far from equilibrium and thus must be examined together in a mutually consistent manner. Includes coverage of such topics as mass and momentum conservation law, bilinear and quadratic forms for entropy production, viscous phenomena, boundary conditions for velocities and much more.
Written by leading experts in their respective fields,
Solidification and Casting provides a comprehensive review of
topics fundamental to metallurgy and materials science as well as
indicates recent trends.
Thermal Conductivity: Thermal Conductivity of LooseFill Materials by a RadialHeatFlow Method (D.R. Flynn). The Probe Method for Measurement of Thermal Conductivity (A.E. Wechsler). Electrical Resistivity: Methods for Electrical Resistivity Measurement Applicable to Medium and Good Electrical Conductors (B. Cales, P. Abelard). Thermal Diffusivity: Modulated Electron Beam Thermal Diffusivity Equipment (R. De Conink). The Apparatus for Measurement of Thermophysical Properties of Liquids by AC HotWire Technique (L.P. Phylippov et al.). Specific Heat: Practical Modulation Calorimetry (Y.A. Kraftmakher). The Application of Differential Scanning Calorimetry to the Measurement of Specific Heat (M.J. Richardson). Thermal Expansion: Methods of Measuring Thermal Expansion (R.K. Kirby). The Review of Certified Thermophysical Property SRMs. Fourteen additonal articles. Index.
Geostationary or equatorial synchronous satellites are a daily reminder of our space efforts during the past two decades. The nightly television satellite weather picture, the intercontinental telecommunications of television transmissions and telephone conversations, and the establishrnent of educational programs in remote regions on Earth are constant reminders of the presence of these satellites. As used here, the term 'geo stationary' must be taken loosely because, in the long run, the satellites will not remain 'stationary' with respect to an Earth-fixed reference frame. This results from the fact that these satellites, as is true for all satellites, are incessantly subject to perturbations other than the central-body attraction of the Earth. Among the more predominant pertur bations are: the ellipticity of the Earth's equator, the Sun and Moon, and solar radiation pressure. Higher harmonics of the Earth's potential and tidal effects also influence satellite motion, but they are of second order when compared to the predominant perturbations. This volume deals with the theory of geostationary satellites. It consists of seven chapters. Chapter 1 provides a general discussion including a brief history of geostationary satellites and their practical applications. Chapter 2 describes the Earth's gravitational potential field and the methodology of solving the geostationary satellite problem. Chapter 3 treats the effect of Earth's equatorial ellipticity (triaxiality) on a geostationary satellite. Chapter 4 deals with the effects of the Sun and Moon on the satellite's motion while Chapter 5 presents the combined influences of the Sun, Moon and solar radiation pressure. Chapter 6 describes various station-keeping techniques which may be used to make geostationary satellites practically stationary. Finally, Chapter 7 describes the verification of the theory developed in Chapters 3, 4 and 5 by utilizing the Early Bird synchronous satellite observed data as well as its numerically integrated results.
Continuum Models for Phase Transitions and Twinning in Crystals presents the fundamentals of a remarkably successful approach to crystal thermomechanics. Developed over the last two decades, it is based on the mathematical theory of nonlinear thermoelasticity, in which a new viewpoint on material symmetry, motivated by molecular theories, plays a central role.
Thermodynamics and Statistical Mechanics provides undergraduate chemistry students with a grounding in both classical and statistical thermodynamics. Thermodynamic quantities and relationships are introduced and developed in a coherent way, enabling students to apply thermodynamic analysis to chemical problems with confidence. Each stage in the development is well illustrated with examples. The text aims to help students understand energy, its different forms and transformations, and the key role of entropy, as applied to chemical systems, addressing questions such as: (i) How much work is performed, and how much heat transfer occurs, during chemical processes and reactions, and how do they depend on temperature? (ii) How is it possible for endothermic processes to occur spontaneously, and will a given reaction occur spontaneously? (iii) What determines the equilibrium between phases? (iv) How do temperature and pressure affect equilibrium? (v) What is the meaning of entropy? (vi) How are macroscopic thermodynamic properties related to microscopic energy levels? Ideal for the needs of undergraduate chemistry students, Tutorial Chemistry Texts is a major series consisting of short, single topic or modular texts concentrating on the fundamental areas of chemistry taught in undergraduate science courses. Each book provides a concise account of the basic principles underlying a given subject, embodying an independent-learning philosophy and including worked examples.
This volume discusses the advances in numerical heat transfer modeling by applying high-performance computing resources, striking a balance between generic fundamentals, specific fundamentals, generic applications, and specific applications.
The essence of temporal universe creation is that any analytical solution has to comply with the boundary condition of our universe; dimensionality and causality constraints. The essence of this book is to show that everything has a price within our temporal (t > 0) universe; energy and time. In mathematics, every postulation needs proof; there exists a solution before searching for the solution. Yet science does not have seem to have a criterion as mathematics does; to prove first that a postulated science exists within our temporal universe. Without such a criterion, fictitious science emerges, as already have been happening in every day's event. In this book, the author has shown there exists a criterion for a postulated science whether or not it is existed within our universe. The author started this book from Einstein's relativity to the creation of our temporal universe. He has shown that every subspace within our universe is created by energy and time, in which subspace and time are coexisted. The important aspect is that every science has to satisfy the boundary condition of our universe; causality and dimensionality. Following up with temporal universe, the author has shown a profound relationship with the second law of thermodynamics. He examines the relationship between entropy with science as well as communication with quantum limited subspace throughout the book. The author discusses the paradox of Schroedinger's Cat (which has been debated by Einstein, Bohr, Schroedinger and many others since 1935) that triggered his discovering that Schroedinger's quantum mechanics is a timeless machine, in which he has disproved the fundamental principle of superposition within our universe. Since quantum mechanics is a virtual mathematics, he has shown that a temporal quantum machine can, in principle, be built on the top of a temporal platform. This book is intended for cosmologists, particle physicists, astrophysicists, quantum physicists, computer scientists, engineers, professors and students as a reference and research-oriented book.
Statistical Thermodynamics and Properties of Matter is written with the advanced undergraduate and graduate student in mind. Its aim is to familiarize the student with the approach that a physicist would take, for example, when tackling problems related to quantum mechanics or thermodynamics.
For a one-semester upper-level undergraduate course in Thermal Physics or Thermodynamics. This book provides a solid introduction to the classical and statistical theories of thermodynamics.
Thermodynamics is used increasingly in ecology to understand the system properties of ecosystems because it is a basic science that describes energy transformation from a holistic view. In the last decade, many contributions to ecosystem theory based on thermodynamics have been published, therefore an important step toward integrating these theories and encouraging a more wide spread use of them is to present them in one volume.
In this invaluable book, macroscopic irreversible thermodynamics is presented in its realm and its splendor by appealing to the notion of internal variables of state. This applies to both fluids and solids with or without microstructures of mechanical or electromagnetic origin. This unmatched richness of essentially nonlinear behaviors is the result of the use of modern mathematical techniques such as convex analysis in a clear-cut framework which allows one to put under the umbrella of "irreversible thermodynamics" behaviors which until now have been commonly considered either not easily covered, or even impossible to incorporate into such a framework.The book is intended for all students and researchers whose main concern is the rational modeling of complex and/or new materials with physical and engineering applications, such as those accounting for coupled-field, hysteresis, fracture, nonlinear-diffusion, and phase-transformation phenomena. |
You may like...
Cyber Crime and Cyber Terrorism…
Babak Akhgar, Andrew Staniforth, …
Paperback
R1,110
Discovery Miles 11 100
|