![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Thermodynamics & statistical physics > Thermodynamics
to increase the use of direct contact processes, the National Science Foundation sup ported a workshop on direct contact heat transfer at the Solar Energy Research Insti tute in the summer of 1985. We served as organizers for this workshop, which em phasized an area of thermal engineering that, in our opinion, has great promise for the future, but has not yet reached the point of wide-spread commercial application. Hence, a summary of the state of knowledge at this point is timely. The workshop had a dual objective: 1. To summarize the current state of knowledge in such a form that industrial practi tioners can make use of the available information. 2. To indicate the research and development needed to advance the state-of-the-art, indicating not only what kind of research is needed, but also the industrial poten tial that could be realized if the information to be obtained through the proposed research activities were available.
Despite scientific evidence that business-as-usual is unsustainable, there is a huge and widespread inertia to 'greening' the planet. Warming to Ecocide considers climate change from a thermodynamic perspective and asks whether market-driven organisations have carried us to the point of no return through the flawed economics of endless growth. Warming to Ecocide begins by exploring the thermodynamic origins of climate change. It demonstrates that equilibrium thermodynamics can provide full explanations for the basic processes of life such as photosynthesis and metabolism, and that non-equilibrium thermodynamics is close to providing an explanation for how life started. Armed with a solid appreciation of the power of thermodynamics, the second half of Warming to Ecocide discusses whether multinational corporations have convinced the public that climate change is insignificant and thereby neutered any all attempts by governments to espouse environmentally-friendly policies. It then goes on to offer strategies whereby mankind may avoid propelling the global average temperature above the pre-industrial level by more than 2 DegreesC, which scientists view as a threshold presaging catastrophic run-away processes.
Beginning with Nobel laureate I. Prigogine's lecture "Entropy Revisited", this book gives a well-balanced survey on capillarity properties at liquid and solid interfaces. It approaches the subject from both the microscopic (statistical mechanics) and the macroscopic (mechanics and thermodynamics) points of view. Experimental aspects and technological applications are also presented. The book addresses researchers and graduate students of physics and physical chemistry.
Large-scale winds and currents tend to balance Coriolis and pressure gradient forces. The time evolution of these winds and currents is the subject of the quasi-geostrophic theory. Chapter 1 presents concepts and equations of classical inertial fluid mechanics. Chapter 2 deals with the equations of thermodynamics that close the governing equations of the fluids. Then, the motion is reformulated in a uniformly rotating reference frame. Chapter 3 deals with the shallow-water model and the homogeneous model of wind-driven circulation. The chapter also describes a classical application of the Ekman layer to the atmosphere. Chapter 4 considers the two-layer model, as an introduction to baroclinic flows, together with the concept of available potential energy. Chapter 5 takes into account continuously stratified flows in the ocean and in the atmosphere.
This textbook takes an interdisciplinary approach to the subject of thermodynamics and is therefore suitable for undergraduates in chemistry, physics and engineering courses. The book is an introduction to phenomenological thermodynamics and its applications to phase transitions and chemical reactions, with some references to statistical mechanics. It strikes the balance between the rigorousness of the Callen text and phenomenological approach of the Atkins text. The book is divided in three parts. The first introduces the postulates and laws of thermodynamics and complements these initial explanations with practical examples. The second part is devoted to applications of thermodynamics to phase transitions in pure substances and mixtures. The third part covers thermodynamic systems in which chemical reactions take place. There are some sections on more advanced topics such as thermodynamic potentials, natural variables, non-ideal mixtures and electrochemical reactions, which make this book of suitable also to post-graduate students.
Entransy in Phase-Change Systems summarizes recent developments in the area of entransy, especially on phase-change processes. This book covers new developments in the area including the great potential for energy saving for process industries, decreasing carbon dioxide emissions, reducing energy bills and improving overall efficiency of systems. This concise volume is an ideal book for engineers and scientists in energy-related industries.
The domain of non-extensive thermostatistics has been subject to intensive research over the past twenty years and has matured significantly. Generalised Thermostatistics cuts through the traditionalism of many statistical physics texts by offering a fresh perspective and seeking to remove elements of doubt and confusion surrounding the area. The book is divided into two parts - the first covering topics from conventional statistical physics, whilst adopting the perspective that statistical physics is statistics applied to physics. The second developing the formalism of non-extensive thermostatistics, of which the central role is played by the notion of a deformed exponential family of probability distributions. Presented in a clear, consistent, and deductive manner, the book focuses on theory, part of which is developed by the author himself, but also provides a number of references towards application-based texts. Written by a leading contributor in the field, this book will provide a useful tool for learning about recent developments in generalized versions of statistical mechanics and thermodynamics, especially with respect to self-study. Written for researchers in theoretical physics, mathematics and statistical mechanics, as well as graduates of physics, mathematics or engineering. A prerequisite knowledge of elementary notions of statistical physics and a substantial mathematical background are required.
These are the succeeding volumes of a series of books on thermodynamic properties of engineering materials prepared under the auspices of the State Service of Standard Reference data of the Soviet Union. Each volume is set up in the same way: Part I deals with a study of all necessary aspects of experimental data interpretation and analysis; Part II then presents the fundamental constants, symbols with units, and data tables. Researchers and engineers in the fields of process design, equipment development, custody transfer and safety will find these book valuable and reliable reference sources for their respective tasks.
The concept of phase space plays a decisive role in the study of the transition from classical to quantum physics. This is particularly the case in areas such as nonlinear dynamics and chaos, geometric quantization and the study of the various semi-classical theories, which are the setting of the present volume. Much of the content is devoted to the study of the Wigner distribution. This volume gives the first complete survey of the progress made by both mathematicians and physicists. It will serve as an excellent reference for further research.
In this volume the author gives a detailed presentation of his theory of multiphase mixtures with structure. The book also addresses students, and in addition encourages further research. Based on the concept of averaging the field equations, conservation and balance equations are developed. A material deformation postulate leads to structured mixtures. The resulting model is compared with those in use elsewhere. The final chapters are devoted to constitutive theory and constitutive equations. In particular, two-phase mixtures are treated in some detail.
Particles with fractional statistics interpolating between bosons and fermions have attracted considerable interest from mathematical physicists. In recent years it has emerged that these so-called anyons have rather unexpected applications, such as the fractional Hall effect, anyonic excitations in films of liquid helium, and high-temrperature superconductivity. Furthermore, they are discussed also in the context of conformal field theories. This book is a systematic and pedagogical introduction that considers the subject of anyons from many different points of view. In particular, the author presents the relation of anyons to braid groups and Chern-Simons field theory and devotes three chapters to physical applications. The book, while being of interest to researchers, primarily addresses advanced students of mathematics and physics.
The study of thermodynamics is often limited to classical thermodynamics where minimal laws and concepts lead to a wealth of equations and applications. The resultant equations best describe systems at equilibrium with no temporal or s- tial parameters. The equations do, however, often provide accurate descriptions for systems close to equilibrium. . Statistical thermodynamics produces the same equilibrium information starting with the microscopic properties of the atoms or molecules in the system that correlates with the results from macroscopic classical thermodynamics. Because both these disciplines develop a wealth of information from a few starting postulates, e. g. , the laws of thermodyamics, they are often introduced as independent disciplines. However, the concepts and techniques dev- oped for these disciplines are extremely useful in many other disciplines. This book is intended to provide an introduction to these disciplines while revealing the connections between them. Chemical kinetics uses the statistics and probabilities developed for statistical thermodynamics to explain the evolution of a system to equilibrium. Irreversible thermodynamics, which is developed from the equations of classical thermodyn- ics, centers on distance-dependent forces, and time-dependent ?uxes. The force ?ux equations of irreversible thermodynamics lead are generated from the intensive and extensive variables of classical thermodynamics. These force ?ux equations lead, in turn, to transport equations such as Fick's ?rst law of diffusion and the Nernst Planck equation for electrochemical transport. The book illustrates the concepts using some simple examples.
This collection of lectures covers a wide range of present day research in thermodynamics and the theory of phase transitions far from equilibrium. The contributions are written in a pedagogical style and present an extensive bibliography to help graduates organize their further studies in this area. The reader will find lectures on principles of pattern formation in physics, chemistry and biology, phase instabilities and phase transitions, spatial and temporal structures in optical systems, transition to chaos, critical phenomena and fluctuations in reaction-diffusion systems, and much more.
More than to any other single individual, thermodynamics owes its creation to Nicolas-Leonard-Sadi ' Carnot. Sadi, the son of the "great Carnot" Lazare, was he- ily in uencedby his father. Not onlywas LazareMinister of War duringNapoleon's consulate, he was a respected mathematician and engineer in his own right. Ma- ematically, Lazare can lay claim to the de nition of the cross ratio, a projective invariant of four points. Lazare was also interested in how machines operated, - phasizing the roles of work and "vis viva," or living force, which was later to be associated with the kinetic energy. He arrived at a dynamical theory that machines in order to operate at maximum ef ciency should avoid "any impact or sudden change. " This was the heritage he left to his son Sadi. The mechanics of Newton, in his Principia, was more than a century old. It dealt with the mechanics of conservative systems in which there was no room for p- cesses involving heat and friction. Such processes would ruin the time reversibility of mechanical laws, which could no longer be derived by minimizing the difference between kinetic and potential energies. When Sadi wrote his only scienti c work in 1824, there were no laws governing the mechanical effects of heat. In fact, caloric theory was still in vogue, which treated heat as an imponderable uid that was c- served.
This book originated from a course given at the Univcrsidad Aut6noma of Madrid in the Spring of 1994 and in the Universidad Complutense of Madrid in 1995. The goal of these courses is to give the non-specialist an introduction to some old and new ideas in the field of strongly correlated systems, in particular the problems posed by the high-1 superconducting materials. As theoretical physicists, our starting viewpoint to address the problem of strongly correlat ed ferlnion systems and related issues of modern condensed matter physics .is the renormalization group approach applied both to quantU111 field theory and statistical physics. In recent years this has become not only a powerful tool for retrieving the essential physics of interacting systems but also a link between theoretical physics and modern condensed matter physics. Furthermore, once we have this common background for dealing with apparently different prob lems, we discuss more specific topics and even phenomenological aspects of the field. In doing so we have tried to make the exposition clear and simple, with out entering into technical details but focusing ill the fundamental physics of the phenomena under study. Therefore, ve expect that our experience ll1ay have some value to other people entering this fascinating field. We have divided these notes into three parts and each part into chapters, which correspond roughly to one or two lectures. Part I, Chaps. 1-2 (A. H. V."
Computer Aided Engineering may be defined as an approach to solving tech nological problems in which most or all of the steps involved are automated through the use of computers, data bases and mathematical models. The success of this ap proach, considering hot forming, is tied very directly to an understanding of material behaviour when subjected to deformation at high temperatures. There is general agreement among engineers that not enough is known about that topic -and this gave the initial impetus for the project described in the present study. The authors secured a research grant from NATO (Special Research Grant #390/83) with a mandate to study the "State-of-the-Art of Controlled Rolling." What follows is the result of that study. There are five chapters in this Monograph. The first one, entitled "State-of-the Art of Controlled Rolling" discusses industrial and laboratory practices and research designed to aid in the development of microalloyed steels of superior quality. Follow ing this is the chapter "Methods of Determining Stress-Strain Curves at Elevated Temperatures." The central concern here is the material's resistance to deformation or in other words, its flow strength, the knowledge of which is absolutely essential for the efficient and economical utilization of the computers controlling the rolling process."
Although nearly three years have elapsed since the publication of this work in Hungarian, it was decided to publish the English edition in the same form as the original, apart from some minor modifications. Since, recent research has been directed to the development of an exact theory of non-linear irreversible processes; we suggest to readers interested in similar tasks - such as the continuation of this boo- that they should study some new publications: "On the most general form of the Thermodynamic Integral Principle," Z. phys. Chem. 239 (1968) 133, and particularly: "On the Governing Principle of Dissi pative Processes," Ann. Phys. 7 (1969) 23. I have to thank my wife and Mr. W.F.HEINZ for the translation of the very concise Hungarian text. I also wish to express my gratitude to Dr. L.KARADI and Mr. Gy. VINCZE for reading the typescript with such care and to Mrs. A. R6sZLER, who typed the manuscript with great patience. I am deeply indebted to Professor ISTVAN SZABO for making this edition available so quickly and for including my work in the "En gineering Science Library." Finally, I would like to express my thanks to Springer-Verlag for the excellent edition and to the editorial staff for their readiness to meet my wishes."
This volume collects contributions to the workshop on "Turbulence Modeling and Vortex Dynamics, Istanbul," where engineers, physicists, and mathematicians discussed the statistical description of turbulence. They cover practical aspects as well as rigorous mathematics. This book will be a source of reference for many years for those working in this most fascinating field of scientific modeling.
Applied Chemical Engineering Thermodynamics provides the undergraduate and graduate student of chemical engineering with the basic knowledge, the methodology and the references he needs to apply it in industrial practice. Thus, in addition to the classical topics of the laws of thermodynamics, pure component and mixture thermodynamic properties as well as phase and chemical equilibria the reader will find: - history of thermodynamics - energy conservation - internmolecular forces and molecular thermodynamics - cubic equations of state - statistical mechanics. A great number of calculated problems with solutions and an appendix with numerous tables of numbers of practical importance are extremely helpful for applied calculations. The computer programs on the included disk help the student to become familiar with the typical methods used in industry for volumetric and vapor-liquid equilibria calculations.
This companion provides a collection of frequently needed numerical data as a convenient desk-top or pocket reference for atmospheric scientists as well as a concise source of information for others interested in this matter. The material contained in this book was extracted from the recent and the past scientific literature; it covers essentially all aspects of atmospheric chemistry. The data are presented primarily in the form of annotated tables while any explanatory text is kept to a minimum. In this condensed form of presentation, the volume may serve also as a supplement to many textbooks used in teaching the subject at various universities. Peter Warneck, a physical chemist specializing in atmospheric chemistry, received the diploma in 1954 and the doctorate in 1956 at the university in Bonn, Germany. In 1959, following several postdoctoral assignments, he joined the GCA Corporation in Bedford, Massachusetts, where he explored elementary processes in the atmospheres of the earth and other planets. He returned to Germany in 1970 to head the chemical kinetics group in the Air Chemistry Division of the Max-Planck-Institute for Chemistry in Mainz. In 1974 he also became professor of physical chemistry at the university in Mainz. In 1991, following German reunification, Warneck was appointed the founding director of the new Institute for Tropospheric Research in Leipzig. He served in this position parallel to his activities in Mainz until official retirement. Warneck s research included laboratory studies of chemical mechanisms and photochemistry as well as the development of analytical techniques for field measurements. Since 1990, his interests are focused on chemical reactions in clouds. Jonathan Williams is an atmospheric chemist. He received his BSc in Chemistry and French and his Ph.D. in Environmental Science from the University of East Anglia, England. Between 1995-1997 he worked as a postdoctoral researcher at the NOAA Aeronomy laboratory in Boulder, USA, and from 1998 to present as a member of staff at the Max Planck Institute for Chemistry, Mainz, Germany. He has participated in many international field measurement campaigns on aircraft, ships and at ground stations. Dr Williams is currently an editor on three atmospheric chemistry journals. His present research involves investigating the chemistry of reactive organic species in the atmosphere, in particular over forested ecosystems and in the marine boundary layer. Dr Williams leads a research group focussed specifically on Volatile Organic Compounds (VOC) at the Max Planck Institute and in 2008 he was made an honorary Reader at the University of East Anglia, UK."
This monograph presents an integrated perspective of the wide range of phenomena and processes applicable to the study of transport of species in porous materials. In order to formulate the entire range of porous media and their uses, this book gives the basics of continuum mechanics, thermodynamics, seepage and consolidation and diffusion, including multiscale homogenization methods. The particular structure of the book has been chosen because it is essential to be aware of the true properties of porous materials particularly in terms of nano, micro and macro mechanisms. This book is of pedagogical and practical importance to the fields covered by civil, environmental, nuclear and petroleum engineering and also in chemical physics and geophysics as it relates to radioactive waste disposal, geotechnical engineering, mining and petroleum engineering and chemical engineering.
Stochastic Dynamics, born almost 100 years ago with the early explanations of Brownian motion by physicists, is nowadays a quickly expanding field of research within nonequilibrium statistical physics. The present volume provides a survey on the influence of fluctuations in nonlinear dynamics. It addresses specialists, although the intention of this book is to provide teachers and students with a reliable resource for seminar work. In particular, the reader will find many examples illustrating the theory as well as a host of recent findings.
This book contains the edited proceedings of the 2nd Internat- ional Conference on Computationa1 Methods and Experimental Meas- urements held on board the QE2 liner from 27th June to 2nd Ju1y 1984. The meeting was sponsored by the International Society for Computationa1 Methods in Engineering and the Department of Civi1 Engineering, Southampton University and organized by the Computationa1 Mechanics Institute of Southampton, England. The QE2 provided an ideal environment for the international meeting and one that was equa11y convenient for the USA and European re- searchers and offered a 10cation propitious to the interchange of ideas and c10se contact between participants. This book covers a wide range of different topics in Computat- iona1 Methods and Experimental Measurements with the main empha- sis on the re1ationships between experimental and ana1ytica1 5- utions. The first section deals with fluid dynamics problems and a 1arge number of app1ications. Section 2 considers geophysica1 fluid dynamics and describes some atmospheric models and their re1ated problems. Water resources are dealt with in Section 3 which describes some app1ications of porous media f10w and sur- face water mode11ing. Wave interaction problems are described in Section 4 and Section 5 considers some important heat transfer app1ications. Other sections - 6 & 7 - study problems re1ated to stress analysis and structura1 app1ications. Vibration pro- blems are becoming of fundamental importance in engineering and part of the Conference Proceedings - Section 8 - are dedicated to the study of experimental and computational models.
Computational Fluid Dynamics has now grown into a multidisciplinary activity with considerable industrial applications. The papers in this volume bring out the current status and future trends in CFD very effectively. They cover numerical techniques for solving Euler and Navier-Stokes equations and other models of fluid flow, along with a number of papers on applications. Besides the 88 contributed papers by research workers from all over the world, the book also includes 6 invited lectures from distinguished scientists and engineers.
In this text the authors develop quantum dynamics of open systems for a wide class of irreversible processes starting from the concept of completely positive semigroups. This unified approach makes the material easily accessible to non-specialists and provides an easy access to practical applications. Written for graduate students, the book presents a wealth of useful examples; in particular, models of unstable and N-level systems are treated systematically and in considerable detail including new types of generated Bloch-equations. The general theory is extensively summarized from abstract dynamical maps to those obtained by a reduction of Hamiltonian dynamics under a Markovian approximation. Various methods of determining semigroup generators and the corresponding master equations are discussed including time-dependent and nonlinear generators. Further topics treated are a generalized H-theorem, quantum detailed balance and return to equilibrium, discrete quantum Boltzmann equation, nonlinear Schrodinger equation, spin relaxation by spin waves, entropy production and its generalization by a measure of irreversibiblity." |
![]() ![]() You may like...
Shoaling with Fish: Using Miniature…
Frank Bonnet, Francesco Mondada
Hardcover
R3,023
Discovery Miles 30 230
Dimensions Of Healthcare Management
Marhie Bezuidenhout
Paperback
![]()
Human Monitoring, Smart Health and…
Sauro Longhi, Andrea Monteriu, …
Hardcover
Introduction To Legal Pluralism In South…
C. Rautenbach
Paperback
![]()
Control Systems in Engineering and…
P. Balasubramaniam, Sathiyaraj Thambiayya, …
Hardcover
R3,510
Discovery Miles 35 100
|