![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Thermodynamics & statistical physics > Thermodynamics
Discusses advances in the computation of phase diagrams Offers expanded treatment of eutectic solidification with practical examples and new coverage of ternary phase diagrams, covering the concepts of orthoequilibrium and paraequilibrium Updates discussion of bainite transformation to reflect current opinions Includes new case studies covering grain refiners in aluminium alloys, additive manufacturing, thin film growth, important aerospace Al-Li alloys, and quenched and partitioned steels, and metastable austenitic stainless steels. Each chapter now begins with a list of key concepts, includes simpler illustrative exercises with relevance to real practical applications, and references to scientific publications updated to reflect experimental and computational advances in metallurgy
Thermodynamics has benefited from nearly 100 years of parallel development with quantum mechanics. As a result, thermal physics has been considerably enriched in concepts, technique and purpose, and now has a dominant role in the developments of physics, chemistry and biology. This unique book explores the meaning and application of these developments using quantum theory as the starting point. The book links thermal physics and quantum mechanics in a natural way. Concepts are combined with interesting examples, and entire chapters are dedicated to applying the principles to familiar, practical and unusual situations. Together with end-of-chapter exercises, this book gives advanced undergraduate and graduate students a modern perception and appreciation for this remarkable subject.
Nothing happens in the world without energy conversion and entropy production. These fundamental natural laws are familiar to most of us when applied to the evolution of stars, biological processes, or the working of an internal combustion engine, but what about industrial economies and wealth production, or their constant companion, pollution? Does economics conform to the First and the Second Law of Thermodynamics? In this important book, Reiner Kummel takes us on a fascinating tour of these laws and their influence on natural, technological, and social evolution. Analyzing economic growth in Germany, Japan, and the United States in light of technological constraints on capital, labor, and energy, Professor Kummel upends conventional economic wisdom by showing that the productive power of energy far outweighs its small share of costs, while for labor just the opposite is true. Wealth creation by energy conversion is accompanied and limited by polluting emissions that are coupled to entropy production. These facts constitute the Second Law of Economics. They take on unprecedented importance in a world that is facing peak oil, debt-driven economic turmoil, and threats from pollution and climate change. They complement the First Law of Economics: Wealth is allocated on markets, and the legal framework determines the outcome. By applying the First and Second Law we understand the true origins of wealth production, the issues that imperil the goal of sustainable development, and the technological options that are compatible both with this goal and with natural laws. The critical role of energy and entropy in the productive sectors of the economy must be realized if we are to create a road map that avoids a Dark Age of shrinking natural resources, environmental degradation, and increasing social tensions.
This immensely practical guide to PIV provides a condensed, yet exhaustive guide to most of the information needed for experiments employing the technique. This second edition has updated chapters on the principles and extra information on microscopic, high-speed and three component measurements as well as a description of advanced evaluation techniques. What's more, the huge increase in the range of possible applications has been taken into account as the chapter describing these applications of the PIV technique has been expanded.
The articles in this book reflect the omnipresence of diffusion processes in the natural sciences. They describe experimental results as well as theoretical models and computer simulations, and address a wide readership including graduate students. The problems treated stem from physics, astronomy, physical chemistry, biology, and medicine. The papers are presented in a tutorial style and reflect the present-day trends in the field.
This is a collection of reasonably self-contained review articles on various features of wetting phenomena from both experimental and theoretical points of view. The experimental papers are concerned with wetting at nanoscopic scales, magnetic wetting transitions, convection at interfaces, and adsorption on a surface. The theoretical part is constituted by recent exact results at d=3, some reviews on wetting and disorder, a mathematical description of wetting, front propagation, random surfaces, and wetting within Potts models. The book addresses researchers, engineers, and graduate students in chemistry, physics, and applied mathematics.
More than to any other single individual, thermodynamics owes its creation to Nicolas-Leonard-Sadi ' Carnot. Sadi, the son of the "great Carnot" Lazare, was he- ily in uencedby his father. Not onlywas LazareMinister of War duringNapoleon's consulate, he was a respected mathematician and engineer in his own right. Ma- ematically, Lazare can lay claim to the de nition of the cross ratio, a projective invariant of four points. Lazare was also interested in how machines operated, - phasizing the roles of work and "vis viva," or living force, which was later to be associated with the kinetic energy. He arrived at a dynamical theory that machines in order to operate at maximum ef ciency should avoid "any impact or sudden change. " This was the heritage he left to his son Sadi. The mechanics of Newton, in his Principia, was more than a century old. It dealt with the mechanics of conservative systems in which there was no room for p- cesses involving heat and friction. Such processes would ruin the time reversibility of mechanical laws, which could no longer be derived by minimizing the difference between kinetic and potential energies. When Sadi wrote his only scienti c work in 1824, there were no laws governing the mechanical effects of heat. In fact, caloric theory was still in vogue, which treated heat as an imponderable uid that was c- served.
The last two years have witnessed a continuation in the breakthrough shift toward pulse tube cryocoolers for long-life, high-reliability cryocooler applications. One class of pulse tubes that has reached maturity is referred to as "Stirling type" because they are based on the linear Oxford Stirling-cooler type compressor; these generally provide cooling in the 30 to 100 K temperature range and operate at frequencies from 30 to 60 Hz. The other type of pulse tube cooler making great advances is the so-called "Gifford-McMahon type. " Pulse tube coolers of this type use a G-M type compressor and lower frequency operation to achieve temperatures in the 2 to 10 K temperature range. Nearly a third of this proceedings covers these new developments in the pulse tube arena. Complementing the work on low-temperature pulse tubes is substantial continued progress on rare earth regenerator materials and Gifford-McMahon coolers. These technologies continue to make great progress in opening up the 2 - 4 K market. Also in the commercial sector, continued interest is being shown in the development of long-life, low-cost cryocoolers for the emerging high temperature superconductor electronics market, particularly the cellular telephone base-station market. At higher temperature levels, closed-cycle J-T or throttle-cycle refrigerators are taking advantage of mixed refrigerant gases to achieve low-cost cryocooler systems in the 65 to 80 K temperature range.
If a Writer would know how to behave himself with relation to Posterity; let him consider in old Books, what he finds, that he is glad to know; and what Omissions he most laments. Jonathan Swift This book emerges from a long story of teaching. I taught chemical engineering thermodynamics for about ten years at the University of Naples in the 1960s, and I still remember the awkwardness that I felt about any textbook I chose to consider-all of them seemed to be vague at best, and the standard of logical rigor seemed immensely inferior to what I could find in books on such other of the students in my first class subjects as calculus and fluid mechanics. One (who is now Prof. F. Gioia of the University of Naples) once asked me a question which I have used here as Example 4. 2-more than 20 years have gone by, and I am still waiting for a more intelligent question from one of my students. At the time, that question compelled me to answer in a way I didn't like, namely "I'll think about it, and I hope I'll have the answer by the next time we meet. " I didn't have it that soon, though I did manage to have it before the end of the course.
In this text the authors develop quantum dynamics of open systems for a wide class of irreversible processes starting from the concept of completely positive semigroups. This unified approach makes the material easily accessible to non-specialists and provides an easy access to practical applications. Written for graduate students, the book presents a wealth of useful examples; in particular, models of unstable and N-level systems are treated systematically and in considerable detail including new types of generated Bloch-equations. The general theory is extensively summarized from abstract dynamical maps to those obtained by a reduction of Hamiltonian dynamics under a Markovian approximation. Various methods of determining semigroup generators and the corresponding master equations are discussed including time-dependent and nonlinear generators. Further topics treated are a generalized H-theorem, quantum detailed balance and return to equilibrium, discrete quantum Boltzmann equation, nonlinear Schrodinger equation, spin relaxation by spin waves, entropy production and its generalization by a measure of irreversibiblity."
The term transport phenomena is used to describe processes in which mass, momentum, energy and entropy move about in matter. Advances in Transport Phenomena provide state-of-the-art expositions of major advances by theoretical, numerical and experimental studies from a molecular, microscopic, mesoscopic, macroscopic or megascopic point of view across the spectrum of transport phenomena, from scientific enquiries to practical applications. The annual review series intends to fill the information gap between regularly published journals and university-level textbooks by providing in-depth review articles over a broader scope than in journals. The authoritative articles, contributed by internationally-leading scientists and practitioners, establish the state of the art, disseminate the latest research discoveries, serve as a central source of reference for fundamentals and applications of transport phenomena, and provide potential textbooks to senior undergraduate and graduate students. This review book provides state-of-the-art expositions of major advances by theoretical, numerical and experimental studies from a molecular, microscopic, mesoscopic, macroscopic or megascopic point of view across the spectrum of transport phenomena, from scientific enquiries to practical applications. This new volume of the annual review "Advances in Transport Phenomena" series provides in-depth review articles covering the fields of mass transfer, fluid mechanics, heat transfer and thermodynamics. This review book provides state-of-the-art expositions of major advances by theoretical, numerical and experimental studies from a molecular, microscopic, mesoscopic, macroscopic or megascopic point of view across the spectrum of transport phenomena, from scientific enquiries to practical applications. This new volume of the annual review "Advances in Transport Phenomena" series provides in-depth review articles covering the fields of mass transfer, fluid mechanics, heat transfer and thermodynamics.
Fundamentals of Combustion Processes is designed as a textbook for an upper-division undergraduate and graduate level combustion course in mechanical engineering. The authors focus on the fundamental theory of combustion and provide a simplified discussion of basic combustion parameters and processes such as thermodynamics, chemical kinetics, ignition, diffusion and pre-mixed flames. The text includes exploration of applications, example exercises, suggested homework problems and videos of laboratory demonstrations
The study of chaotic behaviour of dynamical systems has triggered new efforts to reconcile deterministic and stochastic processes as well as classical and quantum physics. New efforts are made to understand complex and unpredictable behaviour. The papers collected in this volume give a broad overview of these activities. Readers will get a glimpse of the growing importance of Levy processes for physics. They will find new views on fundamental concepts of quantum physics and will see many applications of chaotic and essentially random phenomena to a number of physical problems."
Thermodynamics: Fundamentals and Applications is a 2005 text for a first graduate course in Chemical Engineering. The focus is on macroscopic thermodynamics; discussions of modeling and molecular situations are integrated throughout. Underpinning this text is the knowledge that while thermodynamics describes natural phenomena, those descriptions are the products of creative, systematic minds. Nature unfolds without reference to human concepts of energy, entropy, or fugacity. Natural complexity can be organized and studied by thermodynamics methodology. The power of thermodynamics can be used to advantage if the fundamentals are understood. This text's emphasis is on fundamentals rather than modeling. Knowledge of the basics will enhance the ability to combine them with models when applying thermodynamics to practical situations. While the goal of an engineering education is to teach effective problem solving, this text never forgets the delight of discovery, the satisfaction of grasping intricate concepts, and the stimulation of the scholarly atmosphere.
In this first biography of the physicist Sir James Prescott Joule (1818-1889), his friend and collaborator Osborne Reynolds (1842-1912), Professor of Engineering at Owens College, Manchester, is keen to show how Joule, the son of a prosperous Salford brewer, was an 'ordinary' boy, enjoying regular walking trips to Snowdon, the Peaks and the Lakes; at the same time, he was greatly influenced by two years of tuition by John Dalton. His later experiments, observations and published papers are discussed and quoted at length. Reynolds stresses the influence Joule's work on heat and thermodynamics had on his contemporaries, but also that this 'amateur' scientist was often so far ahead of his time that his work was misunderstood or dismissed. Since publication of this book in 1892, only one other biography of Joule has appeared, and so it remains a vital source of first-hand information on his life and work.
Sir James Prescott Joule (1818-1889) became one of the most significant physicists of the nineteenth century, although his original interest in science was as a hobby and for practical business purposes. The son of a brewer, he began studying heat while investigating how to increase the efficiency of electric motors. His discovery of the relationship between heat and energy contributed to the discovery of the conservation of energy and the first law of thermodynamics. Volume 1 of Joule's scientific papers was published in 1884. It is organised chronologically and reveals the range of Joule's interests and the development of his thought. The topics of the papers include the measurement of heat, voltaic batteries, electromagnets, specific heat, meteorology and thermodynamics. Joule's careful experiments in these areas were fundamental to the development of significant areas of twentieth-century physics, although he was slow to gain recognition from his contemporaries.
Sir James Prescott Joule (1818-1889) became one of the most significant physicists of the nineteenth century, although his original interest in science was as a hobby and for practical business purposes. The son of a brewer, he began studying heat while investigating how to increase the efficiency of electric motors. His discovery of the relationship between heat and energy contributed to the discovery of the conservation of energy and the first law of thermodynamics. Volume 2 of his collected papers, published in 1887, contains those which he co-authored with other noted physicists, such as Scoresby, Playfair and William Thomson, later Lord Kelvin. Because he was based in Manchester, and was not an academic, Joule's work was at first ignored by the scientific establishment, but Thomson's approval helped him gain acceptance. His joint work with Thomson on thermodynamics was fundamental to the development of significant areas of twentieth-century physics.
The authors are very glad to see the publication ofThermodynamicEquilibriaand Extrema in English and would like to express their gratitude to everybody who contributed to this end. The book is devoted to the analysis of attainability regions and partial equilibria in physicochemical and other systems. This analysis employs the extreme models ofclassicalequilibriumthermodynamics. Considerationisgiventotheproblemof choosing, from the set of equilibrium states belonging to the attainability regions, that equilibrium corresponding to the extreme values of a property of interest to a researcher. For example, one might desire to maximize the concentration of target products of a chemical reaction. The problem of coordinating thermodynamics and kinetics is very important in the analysis presented. Ataglance,itmayseemthattheobjectsofstudyinthermodynamics(thescience ofequilibria)andkinetics(thescienceofmotiontowardequilibrium)coincideonly in the case of complete and ?nal equilibrium. In reality, joint application of th- modynamics and kinetic models gives a clearer understanding of the regularities of the kinetics involved. Relativity of the notions of rest and motion was already ?rmly established in mechanics when the principles of equilibrium were formulated by Galilei, D'Alembert, and Lagrange. Historically, the theories of motion and equilibrium states are related. It is precisely the study of gas kinetics that led Clausius and Boltzmann to the main principles of thermodynamics. The systematic analysis of theseprinciplesintheclassicbookbyGibbs,OntheEquilibriumofHeterogeneous Substances [54], demonstrated the feasibility of substituting the models of rest for themodelsofmotionwhenstudyingvariousphysicochemicalprocesses.
This is a collection of papers on a variety of topics of current interest in mathematical physics: integrable systems, quantum groups, topological quantum theory, string theory. Some of the contributions are lengthy reviews of lasting value on subjects like symplectic geometry of the Chern-Simons theory or on mirror symmetry. The book addresses graduate students as well as researchers in mathematical physics.
The book covers the basics and some generalizations of Monte Carlo methods and its applications to discrete and field theoretic models. It covers the study of nonequilibrium models of granular media by computer simulation and pattern formation. Furthermore, the lectures deal with details of phenomena such as chaos, segregation, pattern formation and phase transitions, convection, fluidification, density waves, surface reaction and growth, spread of epidemics, acoustics, deformation, etc. The book addresses students in physics and scientific computation. It should be a valuable reference work for researchers as well.
This collection of lectures covers a wide range of present day research in thermodynamics and the theory of phase transitions far from equilibrium. The contributions are written in a pedagogical style and present an extensive bibliography to help graduates organize their further studies in this area. The reader will find lectures on principles of pattern formation in physics, chemistry and biology, phase instabilities and phase transitions, spatial and temporal structures in optical systems, transition to chaos, critical phenomena and fluctuations in reaction-diffusion systems, and much more.
These are the succeeding volumes of a series of books on thermodynamic properties of engineering materials prepared under the auspices of the State Service of Standard Reference data of the Soviet Union. Each volume is set up in the same way: Part I deals with a study of all necessary aspects of experimental data interpretation and analysis; Part II then presents the fundamental constants, symbols with units, and data tables. Researchers and engineers in the fields of process design, equipment development, custody transfer and safety will find these book valuable and reliable reference sources for their respective tasks.
With the advent of sophisticated computer technology and the development of efficient computational algorithms, numerical modeling of complex multicomponent laminar reacting flows has emerged as an increasingly popular and firmly established area of scientific research. Progress in this area aims at obtaining better resolved and more accurate solutions of specific technological problems in less computer time. Therefore, it strongly relies upon the ability of evaluating fundamental parameters appearing in the physical models. Transport properties constitute a typical example of the above characterization. Evaluating transport coefficients of dilute polyatomic gas mixtures is often critical in many engineering applications, including chemical reactors, hypersonic flows, comb- tion phenomena, and chemical vapor deposition. Using the kinetic theory of dilute polyatomic gas mixtures as a starting point, this book offers a systematic development of a mathematical and numerical theory for the evaluation of transport properties in dilute polyatomic gas mixtures. The present investigation is not specifically.about the kinetic theory of gases, for which there are plenty of excellent and thoroughly do- mented textbooks; it is rather geared toward the development of new, efficient, and general algorithms with which to evaluate transport properties of dilute polyatomic gas mixtures at a reasonable computational cost.
This book contains papers presented at the Engineering Foundation Conference on mineral matter in fuels held on November 2-7, 1997 in Kona, Hawaii. The conference is one of a continuing series that was initiated by the CEGB Mar- wood Engineering Laboratories in 1963. The conference was to be eventually organised by the Engineering Foundation as the need for multi-disciplinary work related to c- trolling ash effects in combustors became apparent. The conference covers both the science and the applications. The papers also present case histories, particularly for current fuel technologies, developments in advanced technologies for power generation and mathematical modelling of these processes. Developments since 1963 have been slow, but steady, due to the complexity of the chemical and physical processes involved. However, the research presented here displays great improvement in our understanding of the mechanisms by which mineral matter will influence fuel use. Steve Benson from EERC presented a review and current status of issues related to ash deposition in coal combustion and gasification. The application of new analytical tools, which have been detailed in the previous conferences, is presented. These include CCSEM, as well as new techniques for char- terising sintering of ash, such as TMA, image analysis, X-ray diffraction crystallography and thermal analysis. The new analytical techniques were extended to encompass widely differing fuels such as biomass. Ole H Larsen from ELSAM Denmark presented a review of these advanced techniques. |
You may like...
Chemical Thermodynamics: Principles and…
J. Bevan Ott, Juliana Boerio-Goates
Hardcover
R2,979
Discovery Miles 29 790
Advances in Heat Transfer, Volume 50
Ephraim M. Sparrow, John Patrick Abraham, …
Hardcover
R4,671
Discovery Miles 46 710
Computational Modeling of Intelligent…
Mostafa Baghani, Majid Baniassadi, …
Paperback
R3,933
Discovery Miles 39 330
Molecular Energetics - Consensed-Phase…
Jose A. Martinho Simoes, Manuel Minas da Piedade
Hardcover
R2,661
Discovery Miles 26 610
Materials for Advanced Heat Transfer…
S. J. Vijay, Brusly Solomon, …
Paperback
R5,072
Discovery Miles 50 720
Deployment of Carbon Capture and Storage…
Lydia Rycroft, Filip Neele
Paperback
R4,788
Discovery Miles 47 880
Thermal Management of Electronics…
Rajesh Baby, C. Balaji
Paperback
|