![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Thermodynamics & statistical physics > Thermodynamics
The thermodynamics of the atmosphere is the subject of several chapters in most textbooks on dynamic meteorology, but there is no work in English to give the subject a specific and more extensive treatment. In writing the present textbook, we have tried to fill this rather remarkable gap in the literature related to atmospheric sciences. Our aim has been to provide students of meteorology with a book that can playa role similar to the textbooks on chemical thermodynamics for the chemists. This implies a previous knowledge of general thermodynamics, such as students acquire in general physics courses; therefore, although the basic principles are reviewed (in the first four chapters), they are only briefly discussed, and emphasis is laid on those topics that will be useful in later chapters, through their application to atmospheric problems. No attempt has been made to introduce the thermodynamics of irreversible processes; on the other hand, consideration of heterogeneous and open homogeneous systems permits a rigorous formulation of the thermodynamic functions of clouds (exclusive of any consideration of microphysical effets) and a better understanding of the approx imations usually implicit in practical applications."
This critical overview describes fluid flow driven by the thermocapillary effect in models of crystal growth. Simple models are the floating-zone technique and the open-boat technique. Basic equations, boundary layer scaling, stability analysis, pattern formation and additional buoyancy are discussed. Particular emphasis is given to the understanding of the physics of flow. This reference book gives a state-of-the-art report and reviews the literature available.
The book guides the reader from the foundations of statisti- cal thermodynamics including the theory of intermolecular forces to modern computer-aided applications in chemical en- gineering and physical chemistry. The approach is new. The foundations of quantum and statistical mechanics are presen- ted in a simple way and their applications to the prediction of fluid phase behavior of real systems are demonstrated. A particular effort is made to introduce the reader to expli- cit formulations of intermolecular interaction models and to show how these models influence the properties of fluid sy- stems. The established methods of statistical mechanics - computer simulation, perturbation theory, and numerical in- tegration - are discussed in a style appropriate for newcom- ers and are extensively applied. Numerous worked examples illustrate how practical calculations should be carried out.
Photothermal science continues to be an area of rapid development and active investigation, as is demonstrated by this volume. The various contributions present fundamental research in materials science, physics, chemistry, biology, and medicine, as well as important applications of photothermal techniques in nondestructive evaluation, aeronomy and pollution control, and other areas. The topics treated include measurements of spectral properties of gases, the theory of thermally generated elastic waves, a method of monitoring local surface displacements, materials characterization and nondestructive evaluation of materials, studies of the dynamics of primary photophysical processes, fast energy exchange at surfaces and at interfaces (e.g. in medicine and photobiology), thermal EXAFS and XANES applied to metals and semiconductors, and imaging of magnetic materials using microwave sources.
Increasing possibilities of computer-aided data processing have caused a new revival of optical techniques in many areas of mechanical and chemical engi neering. Optical methods have a long tradition in heat and mass transfer and in fluid dynamics. Global experimental information is not sufficient for de veloping constitution equations to describe complicated phenomena in fluid dynamics or in transfer processes by a computer program. Furthermore, a detailed insight with high local and temporal resolution into the thermo and fluiddynamic situations is necessary. Sets of equations for computer program in thermo dynamics and fluid dynamics usually consist of two types of formulations: a first one derived from the conservation laws for mass, energy and momentum, and a second one mathematically modelling transport processes like laminar or turbulent diffusion. For reliably predicting the heat transfer, for example, the velocity and temperature field in the boundary layer must be known, or a physically realistic and widely valid correlation describing the turbulence must be avail able. For a better understanding of combustion processes it is necessary to know the local concentration and temperature just ahead of the flame and in the ignition zone."
The five contributions describe some key mathematical concepts involved in the study of complex systems and non-perturbative problems. The selection of topics is intended to cross-fertilize the various fields where complex systems theory has made an impact. The book presents specific and detailed results meant for a wide audience of researchers and students. It begins with those contributions which help to set up a general theoretical framework and ends with selected applications to the particular areas of biophysics, statistical physics, astrophysics and cosmology. It also includes an extensive bibliography. This pedagogically written text can be used as an introduction to the fundamental ideas behind complex systems theory.
Over the last few years it has become apparent that fluid turbulence shares many common features with plasma turbulence, such as coherent structures and self-organization phenomena, passive scalar transport and anomalous diffusion. This book gathers very high level, current papers on these subjects. It is intended for scientists and researchers, lecturers and graduate students because of the review style of the papers.
A molecular view on the fundamental issues in polymer physics is provided with an aim at students in chemistry, chemical engineering, condensed matter physics and material science courses. An updated translation by the author, a renowned Chinese chemist, it has been proven to be an effective source of learning for many years. Up-to-date developments are reflected throughout the work in this concise presentation of the topic. The author aims at presenting the subject in an efficient manner, which makes this particularly suitable for teaching polymer physics in settings where time is limited, without having to sacrifice the extensive scope that this topic demands.
This is a review written by leading specialists on the state of the art of computational methods in lattice field theory. They cover a wide range: computer-assisted proofs, algorithms for computer simulation of field theories, effective field theories, computer studies of finite size effects, simulation with fast algorithms, and computer applicationsin experimental particle physics. The book addresses researchers, engineers, and graduate students in particle physics.
Discusses advances in the computation of phase diagrams Offers expanded treatment of eutectic solidification with practical examples and new coverage of ternary phase diagrams, covering the concepts of orthoequilibrium and paraequilibrium Updates discussion of bainite transformation to reflect current opinions Includes new case studies covering grain refiners in aluminium alloys, additive manufacturing, thin film growth, important aerospace Al-Li alloys, and quenched and partitioned steels, and metastable austenitic stainless steels. Each chapter now begins with a list of key concepts, includes simpler illustrative exercises with relevance to real practical applications, and references to scientific publications updated to reflect experimental and computational advances in metallurgy
Thermodynamics has benefited from nearly 100 years of parallel development with quantum mechanics. As a result, thermal physics has been considerably enriched in concepts, technique and purpose, and now has a dominant role in the developments of physics, chemistry and biology. This unique book explores the meaning and application of these developments using quantum theory as the starting point. The book links thermal physics and quantum mechanics in a natural way. Concepts are combined with interesting examples, and entire chapters are dedicated to applying the principles to familiar, practical and unusual situations. Together with end-of-chapter exercises, this book gives advanced undergraduate and graduate students a modern perception and appreciation for this remarkable subject.
Composed of papers written by leading engineers and scientists in the field, this valuable collection reports the most recent advances in cryocooler development, contains extensive performance test results and comparisons, and relates the latest experience in integrating cryocoolers into advanced applications.
Nothing happens in the world without energy conversion and entropy production. These fundamental natural laws are familiar to most of us when applied to the evolution of stars, biological processes, or the working of an internal combustion engine, but what about industrial economies and wealth production, or their constant companion, pollution? Does economics conform to the First and the Second Law of Thermodynamics? In this important book, Reiner Kummel takes us on a fascinating tour of these laws and their influence on natural, technological, and social evolution. Analyzing economic growth in Germany, Japan, and the United States in light of technological constraints on capital, labor, and energy, Professor Kummel upends conventional economic wisdom by showing that the productive power of energy far outweighs its small share of costs, while for labor just the opposite is true. Wealth creation by energy conversion is accompanied and limited by polluting emissions that are coupled to entropy production. These facts constitute the Second Law of Economics. They take on unprecedented importance in a world that is facing peak oil, debt-driven economic turmoil, and threats from pollution and climate change. They complement the First Law of Economics: Wealth is allocated on markets, and the legal framework determines the outcome. By applying the First and Second Law we understand the true origins of wealth production, the issues that imperil the goal of sustainable development, and the technological options that are compatible both with this goal and with natural laws. The critical role of energy and entropy in the productive sectors of the economy must be realized if we are to create a road map that avoids a Dark Age of shrinking natural resources, environmental degradation, and increasing social tensions.
This immensely practical guide to PIV provides a condensed, yet exhaustive guide to most of the information needed for experiments employing the technique. This second edition has updated chapters on the principles and extra information on microscopic, high-speed and three component measurements as well as a description of advanced evaluation techniques. What's more, the huge increase in the range of possible applications has been taken into account as the chapter describing these applications of the PIV technique has been expanded.
The articles in this book reflect the omnipresence of diffusion processes in the natural sciences. They describe experimental results as well as theoretical models and computer simulations, and address a wide readership including graduate students. The problems treated stem from physics, astronomy, physical chemistry, biology, and medicine. The papers are presented in a tutorial style and reflect the present-day trends in the field.
This is a collection of reasonably self-contained review articles on various features of wetting phenomena from both experimental and theoretical points of view. The experimental papers are concerned with wetting at nanoscopic scales, magnetic wetting transitions, convection at interfaces, and adsorption on a surface. The theoretical part is constituted by recent exact results at d=3, some reviews on wetting and disorder, a mathematical description of wetting, front propagation, random surfaces, and wetting within Potts models. The book addresses researchers, engineers, and graduate students in chemistry, physics, and applied mathematics.
If a Writer would know how to behave himself with relation to Posterity; let him consider in old Books, what he finds, that he is glad to know; and what Omissions he most laments. Jonathan Swift This book emerges from a long story of teaching. I taught chemical engineering thermodynamics for about ten years at the University of Naples in the 1960s, and I still remember the awkwardness that I felt about any textbook I chose to consider-all of them seemed to be vague at best, and the standard of logical rigor seemed immensely inferior to what I could find in books on such other of the students in my first class subjects as calculus and fluid mechanics. One (who is now Prof. F. Gioia of the University of Naples) once asked me a question which I have used here as Example 4. 2-more than 20 years have gone by, and I am still waiting for a more intelligent question from one of my students. At the time, that question compelled me to answer in a way I didn't like, namely "I'll think about it, and I hope I'll have the answer by the next time we meet. " I didn't have it that soon, though I did manage to have it before the end of the course.
In this text the authors develop quantum dynamics of open systems for a wide class of irreversible processes starting from the concept of completely positive semigroups. This unified approach makes the material easily accessible to non-specialists and provides an easy access to practical applications. Written for graduate students, the book presents a wealth of useful examples; in particular, models of unstable and N-level systems are treated systematically and in considerable detail including new types of generated Bloch-equations. The general theory is extensively summarized from abstract dynamical maps to those obtained by a reduction of Hamiltonian dynamics under a Markovian approximation. Various methods of determining semigroup generators and the corresponding master equations are discussed including time-dependent and nonlinear generators. Further topics treated are a generalized H-theorem, quantum detailed balance and return to equilibrium, discrete quantum Boltzmann equation, nonlinear Schrodinger equation, spin relaxation by spin waves, entropy production and its generalization by a measure of irreversibiblity."
The term transport phenomena is used to describe processes in which mass, momentum, energy and entropy move about in matter. Advances in Transport Phenomena provide state-of-the-art expositions of major advances by theoretical, numerical and experimental studies from a molecular, microscopic, mesoscopic, macroscopic or megascopic point of view across the spectrum of transport phenomena, from scientific enquiries to practical applications. The annual review series intends to fill the information gap between regularly published journals and university-level textbooks by providing in-depth review articles over a broader scope than in journals. The authoritative articles, contributed by internationally-leading scientists and practitioners, establish the state of the art, disseminate the latest research discoveries, serve as a central source of reference for fundamentals and applications of transport phenomena, and provide potential textbooks to senior undergraduate and graduate students. This review book provides state-of-the-art expositions of major advances by theoretical, numerical and experimental studies from a molecular, microscopic, mesoscopic, macroscopic or megascopic point of view across the spectrum of transport phenomena, from scientific enquiries to practical applications. This new volume of the annual review "Advances in Transport Phenomena" series provides in-depth review articles covering the fields of mass transfer, fluid mechanics, heat transfer and thermodynamics. This review book provides state-of-the-art expositions of major advances by theoretical, numerical and experimental studies from a molecular, microscopic, mesoscopic, macroscopic or megascopic point of view across the spectrum of transport phenomena, from scientific enquiries to practical applications. This new volume of the annual review "Advances in Transport Phenomena" series provides in-depth review articles covering the fields of mass transfer, fluid mechanics, heat transfer and thermodynamics.
The study of chaotic behaviour of dynamical systems has triggered new efforts to reconcile deterministic and stochastic processes as well as classical and quantum physics. New efforts are made to understand complex and unpredictable behaviour. The papers collected in this volume give a broad overview of these activities. Readers will get a glimpse of the growing importance of Levy processes for physics. They will find new views on fundamental concepts of quantum physics and will see many applications of chaotic and essentially random phenomena to a number of physical problems."
Addressing graduate students and researchers in physics and mathematics, this book fills a gap in the literature. It is an introduction into modern constructive physics, field theory and statistical mechanics and a survey on the most recent research in this field. It presents the main technical tools such as cluster expansion and their implementation in the rigorous renormalization group, and studies physical models in some detail. The reader will find a study of the ultraviolet limit of the Gross-Neveu model, of continuous symmetry breaking and of self-avoiding random walks in statistical mechanics, as well as applications to solid-state physics. Mathematicians will find constructive methods useful for studies in partial differential equations.
Thermodynamics: Fundamentals and Applications is a 2005 text for a first graduate course in Chemical Engineering. The focus is on macroscopic thermodynamics; discussions of modeling and molecular situations are integrated throughout. Underpinning this text is the knowledge that while thermodynamics describes natural phenomena, those descriptions are the products of creative, systematic minds. Nature unfolds without reference to human concepts of energy, entropy, or fugacity. Natural complexity can be organized and studied by thermodynamics methodology. The power of thermodynamics can be used to advantage if the fundamentals are understood. This text's emphasis is on fundamentals rather than modeling. Knowledge of the basics will enhance the ability to combine them with models when applying thermodynamics to practical situations. While the goal of an engineering education is to teach effective problem solving, this text never forgets the delight of discovery, the satisfaction of grasping intricate concepts, and the stimulation of the scholarly atmosphere. |
You may like...
Wearable Technologies - Concepts…
Information Reso Management Association
Hardcover
R9,397
Discovery Miles 93 970
Grasp - The Science Transforming How We…
Sanjay Sarma, Luke Yoquinto
Hardcover
|