![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Thermodynamics & statistical physics > Thermodynamics
Providing the first comprehensive treatment, this book covers all aspects of the laser Doppler and phase Doppler measurement techniques, including light scattering from small particles, fundamental optics, system design, signal and data processing, tracer particle generation, and applications in single and two-phase flows. The book is intended as both a reference book for more experienced users as well as an instructional book for students. It provides ample material as a basis for a lecture course on the subject and represents one of the most comprehensive treatments of the phase Doppler technique to date. The book will serve as a valuable reference book in any fluid mechanics laboratory where the laser Doppler or phase Doppler techniques are used. This work reflects the authors' long practical experience in the development of the techniques and equipment, as the many examples confirm.
The present volume offers a state-of-the-art report on the various recent sci entific developments in the Theory of Porous Media (TPM) comprehending the basic theoretical concepts in continuum mechanics on porous and mul tiphasic materials as well as the wide range of experimental and numerical applications. Following this, the volume does not only address the sophisti cated reader but also the interested beginner in the area of Porous Media by presenting a collection of articles. These articles written by experts in the field concern the fundamental approaches to multiphasic and porous materials as well as various applications to engineering problems. In many branches of engineering just as in applied natural sciences like bio- and chemomechanics, one often has to deal with continuum mechanical problems which cannot be uniquely classified within the well-known disci plines of either "solid mechanics" or "fluid mechanics." These problems, characterized by the fact that they require a unified treatment of volumetri cally coupled solid-fluid aggregates; basically fall into the categories of either mixtures or porous media. Following this, there is a broad variety of problems ranging in this category as for example the investigation of reacting fluid mix tures or solid-fluid suspensions as well as the investigation of the coupled solid deformation and pore-fluid flow behaviour of liquid- and gas-saturated porous solid skeleton materials like geomaterials (soil, rock, concrete, etc. ), polymeric and metallic foams or biomaterials (hard and soft tissues, etc)."
This book does not give a prediction of what the efficiency will be of the energy use of industrial processes in the future. However, it does give an exploration of limits to the efficiency of current processes and an indication of what might be achieved if new technologies can be developed. At the Department of Science, Technology and Society of Utrecht University research had been done to the opportunities for improvement of the energy efficiency in the short term since the 1980's. This had resulted in a comprehensive database on energy efficient measures. This database and a possible application are described in Chapter 3 of this book. The use of the database induced new research themes around efficiency improvement, e.g. concerning barriers for implementation of measures. It was around 1993 that I did a preliminary study to the potential for efficiency improvement in the long term. Historical analysis had shown us that the short term potential stayed constant over the years. It seemed to be replenished by the introduction of new technologies. This lead to the question whether there are limits to the efficiency, taking into account both thermodynamic considerations and ideas on the development and dissemination of new technologies.
This book involves application of the Calphad method for derivation of a self consistent thermodynamic database for the geologically important system Mg0- Fe0-Fe203-Alz03-Si02 at pressures and temperatures of Earth's upper mantle and the transition zone of that mantle for Earth. The created thermodynamic database reproduces phase relations at 1 bar and at pressures up to 30 GPa. The minerals are modelled by compound energy formalism, which gives realistic descriptions of their Gibbs energy and takes into account crystal structure data. It incorporates a detailed review of diverse types of experimental data which are used to derive the thermodynamic database: phase equilibria, calorimetric stud ies, and thermoelastic property measurements. The book also contains tables of thermodynamic properties at 1 bar (enthalpy and Gibbs energy of formation from the elements, entropy, and heat capacity, and equation of state data at pressures from 1 bar to 30 GPa. Mixing parameters of solid solutions are also provided by the book. Table of Contents Introduction to the Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IX Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XI Co-Authors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XIII Vitae of Co-Authors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XV CODATA Task Group on Geothermodynamic Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XXIII Chapter 1. Thermodynamics and Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. 2 Thermodynamic Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. 3 Experimental Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1. 4 Programs and Assessment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 System and Phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1. 5 Chapter 2. Experimental Phase Equilibrium Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 The Si02 System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2. 1 2. 2 The Fe-0 System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2. 3 The Fe-Si-0 System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2. 4 The Mg0-Si0 System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
In Statistical Physics one of the ambitious goals is to derive rigorously, from statistical mechanics, the thermodynamic properties of models with realistic forces. Elliott Lieb is a mathematical physicist who meets the challenge of statistical mechanics head on, taking nothing for granted and not being content until the purported consequences have been shown, by rigorous analysis, to follow from the premises. The present volume contains a selection of his contributions to the field, in particular papers dealing with general properties of Coulomb systems, phase transitions in systems with a continuous symmetry, lattice crystals, and entropy inequalities. It also includes work on classical thermodynamics, a discipline that, despite many claims to the contrary, is logically independent of statistical mechanics and deserves a rigorous and unambiguous foundation of its own. The articles in this volume have been carefully annotated by the editors.
This textbook covers the basic principles of statistical physics and thermodynamics. The text is pitched at the level equivalent to first-year graduate studies or advanced undergraduate studies. It presents the subject in a straightforward and lively manner. After reviewing the basic probability theory of classical thermodynamics, the author addresses the standard topics of statistical physics. The text demonstrates their relevance in other scientific fields using clear and explicit examples. Later chapters introduce phase transitions, critical phenomena and non-equilibrium phenomena.
The theory of thermoelasticity studies the interaction between thermal and mechan ical fields in elastic bodies. This theory is of interest both for the mathematical and technical point of view. Intense interest has been shown recently in this field owing to the great practical importance of dynamical effects in aeronautics, nu clear reactors, and its potential importance in cryogenic applications. This work is concerned mainly with basic problems of the theory of thermoelasticity. Ther moelasticity of polar materials and the theories of thermoelasticity with finite wave speeds are not considered here. The reader interested in these subjects will find a full account in the works of Nowacki [280], Chandrasekharaiah [60] and Ignaczak [195]. Our purpose in this work is to present a systematic treatment of some results established in the theory of thermoelasticity. On the whole, the subject matter is directed towards recent developments. Chapter 1 is concerned mainly with the development of the fundamental equa tions of the theory of thermoelasticity. The kinematics and primitive concepts associated with the basic principles are developed and emphasized only to the ex tent that they are needed in our treatment of the subject. Chapter 2 is devoted to a study of linear thermoelastic deformations for prestressed bodies. We have at tempted to isolate those conceptual and mathematical difficulties which arise over and above those inherent in the problems concerned with unstressed bodies.
Crystal growth, casting, soldering, welding, high-energy surface treatment, nuclear safety systems and geophysical flows are just a few examples where solidification and convection occur together. These processes are interactive on micro- and macroscales: flow affects the distribution of heat and species and hence the freezing process, while solidification evolves flow boundaries, as in crusting, for example, and hence can radically alter the convection. Mathematical modellers, experimentalists and applied scientists were invited to this colloquium with the aim of consolidating our understanding of such interactions, of identifying key outstanding issues, and of developing new approaches in this important area of fundamental research. Both invited and contributed papers focus on both fundamental and technologically relevant problems.
The simulation of technological and environmental flows is very important for many industrial developments. A major challenge related to their modeling is to involve the characteristic turbulence that appears in most of these flows. The traditional way to tackle this question is to use deterministic equations where the effects of turbulence are directly parametrized, i. e. , assumed as functions of the variables considered. However, this approach often becomes problematic, in particular if reacting flows have to be simulated. In many cases, it turns out that appropriate approximations for the closure of deterministic equations are simply unavailable. The alternative to the traditional way of modeling turbulence is to construct stochastic models which explain the random nature of turbulence. The application of such models is very attractive: one can overcome the closure problems that are inherent to deterministic methods on the basis of relatively simple and physically consistent models. Thus, from a general point of view, the use of stochastic methods for turbulence simulations seems to be the optimal way to solve most of the problems related to industrial flow simulations. However, it turns out that this is not as simple as it looks at first glance. The first question concerns the numerical solution of stochastic equations for flows of environmental and technological interest. To calculate industrial flows, 3 one often has to consider a number of grid cells that is of the order of 100 .
obtained are still severely limited to low Reynolds numbers (about only one decade better than direct numerical simulations), and the interpretation of such calculations for complex, curved geometries is still unclear. It is evident that a lot of work (and a very significant increase in available computing power) is required before such methods can be adopted in daily's engineering practice. I hope to l"Cport on all these topics in a near future. The book is divided into six chapters, each. chapter in subchapters, sections and subsections. The first part is introduced by Chapter 1 which summarizes the equations of fluid mechanies, it is developed in C apters 2 to 4 devoted to the construction of turbulence models. What has been called "engineering methods" is considered in Chapter 2 where the Reynolds averaged equations al"C established and the closure problem studied ( 1-3). A first detailed study of homogeneous turbulent flows follows ( 4). It includes a review of available experimental data and their modeling. The eddy viscosity concept is analyzed in 5 with the l"Csulting alar-transport equation models such as the famous K-e model. Reynolds stl"Css models (Chapter 4) require a preliminary consideration of two-point turbulence concepts which are developed in Chapter 3 devoted to homogeneous turbulence. We review the two-point moments of velocity fields and their spectral transforms ( 1), their general dynamics ( 2) with the particular case of homogeneous, isotropie turbulence ( 3) whel"C the so-called Kolmogorov's assumptions are discussed at length."
Carl Friedrich von Weizsacker s "Aufbau der Physik," first published in 1985, was intended as an overview of his lifelong concern: an understanding of the unity of physics. That is, the idea of a quantum theory of binary alternatives (the so-called ur-theory), a unified quantum theoretical framework in which spinorial symmetry groups are considered to give rise to the structure of space and time. The book saw numerous reprints, but it was published in German only. The present edition, in English, provides a newly arranged and revised version, in which some original chapters and sections have been deleted, and a new chapter about further insights and results of ur-theoretic research of the late 1980 s and 1990 s, mainly by the work of Thomas Gornitz, has been included, as well as a general introduction to Weizsacker s Philosophy of Physics. Carl Friedrich von Weizsacker also enjoys high esteem by a much broader audience for his socio-cultural, political and religious thoughts and writings. In him the intercultural and interdisciplinary dialogue has found one of its most important proponents: a great thinker who combines the perspectives of science, philosophy, religion and politics with a view towards the challenges as well as the responsibilities of our time."
This book presents a new and promising technique to grow single crystalline compound semiconductor materials with defined stoichometry. The technique is based on the high-precision experimental determination of the boundaries of the single-phase volume of the solid in the pressure-temperature-composition P-T-X phase space. Alongside test results obtained by the author and his colleagues, the P-T-X diagrams of other important materials (e.g., III-V, V-VI semiconductors) are also discussed.
From the reviews: "The book is excellent, and covers a very broad area (usually treated as separate topics) from a unified perspective. [ ] It will be very useful for both mathematicians and physicists." EMS Newsletter
Modulation Calorimetry reviews modulation techniques for measuring specific heat, thermal expansivity, temperature derivative of resistance, thermopower, and spectral absorptance. Owing to the periodic nature of the temperature oscillations, high sensitivity and excellent temperature resolution are peculiar to all these methods. The monograph presents the various methods of the modulation and of measuring the temperature oscillations. Important applications of the modulation techniques for studying physical phenomena in solids and liquids are considered in depth (equilibrium point defects, phase transitions, superconductors, liquid crystals, biological materials, relaxation phenomena in specific heat, and more).
Diffusion is a vital topic in solid-state physics and chemistry, physical metallurgy and materials science. Diffusion processes are ubiquitous in solids at elevated temperatures. A thorough understanding of diffusion in materials is crucial for materials development and engineering. This book first gives an account of the central aspects of diffusion in solids, for which the necessary background is a course in solid state physics. It then provides easy access to important information about diffusion in metals, alloys, semiconductors, ion-conducting materials, glasses and nanomaterials. Several diffusion-controlled phenomena, including ionic conduction, grain-boundary and dislocation pipe diffusion, are considered as well. Graduate students in solid-state physics, physical metallurgy, materials science, physical and inorganic chemistry or geophysics will benefit from this book as will physicists, chemists, metallurgists, materials engineers in academic and industrial research laboratories.
Based on practical problems in mechanical engineering, here the author develops the fundamental concepts of non-smooth mechanics and introduces the necessary background material needed to deal with mechanics involving discontinuities and non-smooth constraints.
Since the petroleum crisis in the 1970s, a lot of effort to save energy was made in industry, and remarkable achievements have been made. In the research and development concerning thermal energy, however, it was clar ified that one of the most important problems was manufacturing con densing systems with smaller size and higher performance. To solve this problem we need a method which synthesizes selections_ of the type of con denser, cooling tube and its arrangement, assessment of fouling on the cooling surfaces, consideration of transient characteristics of a condenser, etc. The majority of effort, however, has been to devise a surface element which enhances the heat transfer coefficient in condensation of a single or multicomponent vapor. Condensation phenomena are complexly affected by a lot of physical property values, and accordingly the results of theo retical research are expressed with several dimensionless parameters. On the other hand, the experimental research is limited to those with some specified cooling surfaces and some specified working fluids. Hence, the basic research of condensation is necessary for criticizing the enhancement effect as well as for an academic interest."
With the development of science and technology, more and more complex materials such as porous materials, ion liquid, liquid crystals, thin ?lms and colloids etc. are being developed in laboratories. However, it is dif?cult to prepare these advanced materials and use them on a large scale without some experience. Therefore, mo- cular thermodynamics, a method that laid emphasis on correlating and interpreting the thermodynamic properties of a variety of ?uids in the past, has been recently employed to study the equilibrium properties of complex materials and establish thermodynamic models to analyse the evolution process of their components, - crostructures and functions during the preparation process. In this volume, some important progress in this ?eld, from fundamental aspects to practical applications, is reviewed. In the ?rst chapter of this volume, Prof. Jianzhong Wu presents the application of Density Functional theory (DFT) for the study of the structure and thermodynamic properties of both bulk and inhomogeneous ?uids. This chapter presents a tut- ial overview of the basic concepts of DFT for classical systems, the mathematical relations linking the microstructure and correlation functions to measurable th- modynamic quantities, and the connections of DFT with conventional liquid-state theories. While for pedagogythe discussion is limited to one-componentsimple - ids, similar ideas and concepts are directly applicable to mixtures and polymeric systems of practical concern. This chapter also covers a few theoretical approaches to formulate the thermodynamic functional
The present volume contains expanded and substantially reworked records of invitedlecturesdeliveredduringthe38thKarpaczWinterSchoolofTheoretical Physics on "Dynamical Semigroups: Dissipation, Chaos, Quanta", which took placeinLadek , Zdr' oj,(Poland)intheperiod6-15February2002. Themainpurposeoftheschoolwastocreateaplatformfortheconfrontation ofviewpointsandresearchmethodologiesrepresentedbytwogroupsofexperts actually working in the very same area of theoretical physics. This situation is quite distinct in non-equilibrium statistical physics of open systems, where classicalandquantumaspectsareaddressedseparatelybymeansofverydi?erent andevenincompatibleformaltools. TheschooltopicsselectionbytheLecturersreads:dissipativedynamicsand chaoticbehaviour,modelsofenvironment-systemcouplingandmodelsofth- mostats;non-equilibriumstatisticalmechanicsandfarfromequilibriumphen- ena;quantumopensystems,decoherenceandlinkstoquantumchaos;quantum andclassicalapplicationsofMarkovsemigroupsandthevalidityofMarkovian approximations. Theorganizingprincipleforthewholeendeavourwastheissueofthedyn- ics of open systems and more speci?cally -15February2002. Themainpurposeoftheschoolwastocreateaplatformfortheconfrontation ofviewpointsandresearchmethodologiesrepresentedbytwogroupsofexperts actually working in the very same area of theoretical physics. This situation is quite distinct in non-equilibrium statistical physics of open systems, where classicalandquantumaspectsareaddressedseparatelybymeansofverydi?erent andevenincompatibleformaltools. TheschooltopicsselectionbytheLecturersreads:dissipativedynamicsand chaoticbehaviour,modelsofenvironment-systemcouplingandmodelsofth- mostats;non-equilibriumstatisticalmechanicsandfarfromequilibriumphen- ena;quantumopensystems,decoherenceandlinkstoquantumchaos;quantum andclassicalapplicationsofMarkovsemigroupsandthevalidityofMarkovian approximations. Theorganizingprincipleforthewholeendeavourwastheissueofthedyn- ics of open systems and more speci?cally - thedynamics of dissipation. Since this research area is extremely broad and varied, no single book can cover all importantdevelopments. Therefore,linkswithdynamicalchaoswerechosento representasupplementaryconstraint. Theprogrammeoftheschoolandits?naloutcomeintheformofthepresent volumehasbeenshapedwiththehelpofthescienti?ccommitteecomprising:R. Alicki,Ph. Blanchard,J. R. Dorfman,G. Gallavotti,P. Gaspard,I. Guarneri, ? F. Haake, M. Ku's, A. Lasota, B. Zegarlinski ' and K. Zyczkowski. Some of the committeememberstookchargeoflecturingtoo. Weconveyourthankstoall ofthem. Wewouldliketoexpresswordsofgratitudetomembersofthelocalorgan- ingcommittee,W. Ceg laandP. Lugiewicz, fortheirhelp. Specialthanksmust beextendedtoMrsAnnaJadczykforherhelpatvariousstagesoftheschool organizationandthecompetenteditorialassistance. Theschoolwas?nanciallysupportedbytheUniversityofWroc law,Univ- sityofZielonaG' ora,PolishMinistryofEducation,PolishAcademyofSciences, FoundationfortheKarpaczWinterSchoolofTheoreticalPhysicsandthe- nationfromtheDrWilhelmHeinrichHeraeusundElseHeraeusStiftung. Wrocla wandZielonaG' ora,Poland PiotrGarbaczewski June2002 RobertOlkiewicz TableofContents Introduction...1 ChapterI NonequilibriumDynamics SomeRecentAdvancesinClassicalStatisticalMechanics E. G. D. Cohen...7 DeterministicThermostatsandFluctuationRelations L. Rondoni...35 WhatIstheMicroscopicResponseofaSystem DrivenFarFromEquilibrium? C. Jarzynski...63 Non-equilibriumStatisticalMechanics ofClassicalandQuantumSystems D. Kusnezov,E. Lutz,K. Aoki...8 3 ChapterII DynamicsofRelaxationandChaoticBehaviour DynamicalTheoryofRelaxation inClassicalandQuantumSystems P. Gaspard...111 RelaxationandNoiseinChaoticSystems S. Fishman,S. Rahav...165 FractalStructuresinthePhaseSpace ofSimpleChaoticSystemswithTransport J. R. Dorfman...193 ChapterIII DynamicalSemigroups MarkovSemigroupsandTheirApplications R. Rudnicki,K. Pich'or,M. Tyran-Kaminska ' ...215 VIII TableofContents InvitationtoQuantumDynamicalSemigroups R. Alicki...239 FiniteDissipativeQuantumSystems M. Fannes...265 CompletePositivityinDissipativeQuantumDynamics F. Benatti,R. Floreanini,R. Romano...283 QuantumStochasticDynamicalSemigroup W. A. Majewski ...305 ChapterIV Driving,DissipationandControlinQuantumSystems DrivenChaoticMesoscopicSystems, DissipationandDecoherence D. Cohen...317 QuantumStateControlinCavityQED T. WellensandA. Buchleitner...351 SolvingSchrodinger'sEquationforanOpenSystem andItsEnvironment W. T. Strunz...377 ChapterV DynamicsofLargeSystems ThermodynamicBehaviorofLargeDynamicalSystems -Quantum1dConductorandClassicalMultibakerMap- S. Tasaki...395 CoherentandDissipativeTransport inAperiodicSolids:AnOverview J. Bellissard...
Reinvigorated by advances and insights the quantum theory of irreversible processes has recently attracted growing attention. This volume introduces the very basic concepts of semigroup dynamics of open quantum systems and reviews a variety of modern applications. Originally published as Volume 286 (1987) in Lecture in Physics, this volume has been newly typeset, revised and corrected and also expanded to include a review on recent developments.
The nuclear thermal hydraulic is the science providing knowledge about the physical processes occurring during the transferring the fission heat released in structural materials due to nuclear reactions into its environment. Along its way to the environment the thermal energy is organized to provide useful mechanical work or useful heat or both. Chapter 1 contains introductory information about the heat release in the re- tor core, the thermal power and thermal power density in the fuel, structures and moderator, the influence of the thermal power density on the coolant temperature, the spatial distribution of the thermal power density. Finally some measures are introduced for equalizing of the spatial distribution of the thermal power density. Chapter 2 gives the methods for describing of the steady and of the transient temperature fields in the fuel elements. Some information is provided regarding influence of the cladding oxidation, hydrogen diffusion and of the corrosion pr- uct deposition on the temperature fields. Didactically the nuclear thermal hydraulic needs introductions at different level of complexity by introducing step by step the new features after the previous are clearly presented. The followed two Chapters serve this purpose. Chapter 3 describes mathematically the "simple" steady boiling flow in a pipe. The steady mass-, momentum- and energy conservation equations are solved at different level of complexity by removing one after the other simplifying assu- tions. First the idea of mechanical and thermodynamic equilibrium is introduced.
This book addresses several of the foundational problems in thermophysics, i. e. thermodynamics and statistical mechanics. It is an interdisciplinary work in that it examines the philosophical underpinning of scientific models and theories; it also refines the analysis of the problems at hand and delineates the place occupied by various scientific models in a generalized philosophical landscape. Hence, our philosophical - or theoretical - inquiry focuses sharply on the concept of models; and our empirical - or laboratory - evidence is sought in the model-building activities of scientists who have tried to confront the epistemological problems arising in the thermophysical sciences. Primarily for researchers and students in physics, philosophy of science, and mathematics, our book aims at informing the readers - with all the in dispensable technical details made readily available - about the nature of the foundational problems, how these problems are approached with the help of various mathematical models, and what the philosophical implications of such models and approaches involve. Some familiarity with elementary ther mophysics and/or with introductory-level philosophy of science may help, but neither is a prerequisite. The logical and mathematical background re quired for the book are introduced in the Appendices. Upon using the Subject Index, the readers may easily locate the concepts and theorems needed for understanding various parts of the book. The Citation Index lists the authors of the contributions we discuss in detail."
This book contains the expanded lecture notes of the 32nd Saas-Fee Advanced Course. The three contributions present the central themes in modern research on the cold universe, ranging from cold objects at large distances to the physics of dust in cold clouds.
The present volume studies the application of concepts from non-equilibrium thermodynamics to a variety of research topics. Emphasis is on the Maximum Entropy Production (MEP) principle and applications to Geosphere-Biosphere couplings. Written by leading researchers from a wide range of backgrounds, the book presents a first coherent account of an emerging field at the interface of thermodynamics, geophysics and life sciences.
This book covers all aspects of supercharging internal combustion engines. It details charging systems and components, the theoretical basic relations between engines and charging systems, as well as layout and evaluation criteria for best interaction. Coverage also describes recent experiences in design and development of supercharging systems, improved graphical presentations, and most advanced calculation and simulation tools. |
![]() ![]() You may like...
More Than Parcels - Wartime Aid for Jews…
Jan Lanicek, Jan Lambertz
Hardcover
R2,756
Discovery Miles 27 560
Electroencephalography and…
George Dassios, Athanassios S. Fokas
Hardcover
R4,443
Discovery Miles 44 430
Neurological Complications of Systemic…
Herbert B. Newton, Mark G Malkin
Hardcover
R5,342
Discovery Miles 53 420
Poetics and Narrative Function of Tobit…
Jose Lucas Brum Teixeira
Hardcover
R3,390
Discovery Miles 33 900
Bridging Algebra, Geometry, and Topology
Denis Ibadula, Willem Veys
Hardcover
Fundamental of Agronomy
B S Lalitha, Manjanagouda Sannagoudar, …
Hardcover
R3,321
Discovery Miles 33 210
|