Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Physics > Thermodynamics & statistical physics > Thermodynamics
This concise treatment embraces, in four parts, all the main aspects of theoretical physics. Recent topics such as holography and quantum cryptography are included. The book summarizes what a graduate student, physicist working in industry, or a physics teacher should master during his or her degree course. It will also be useful for deepening one 's insight and it adds new dimensions to understanding of these elemental concepts.
This book presents a thorough treatment of plasma physics, beginning at an introductory level and proceeding to an extensive discussion of its applications in thermonuclear fusion research. The physics of fusion plasmas is explained mainly in relation to recent progress in tokamak research, but other plasma confinement schemes, such as stellarators and inertial confinement, are also described. The unique and systematic presentation will help readers to understand the overall structure of plasma theory.
The core of ths book presents a theory developed by the author to combine the recent insight into empirical data with mathematical models in freeway traffic research based on dynamical non-linear processes.
Speckle photography is an advanced experimental technique used for quantitatve determination of density, velocity and temperature fields in gas, liquid, and plasma flows. This book presents the most important equations for the diffraction theory of speckle formation and the statistical properties of speckle fields. It also describes experimental set-ups and the equipment needed to implement these methods. Speckle photography methods for automatic data acquisition and processing are considered and examples for their use are given.
This concise textbook develops step by step the fundamental principles of continuum mechanics. Emphasis is on mathematical clarity, and an extended appendix provides the required background knowledge in linear algebra and tensor calculus. After introducing the basic notions about general kinematics, balance equations, material objectivity and constitutive functions, the book turns to the presentation of rational thermodynamics by stressing the role of Lagrange multipliers in deriving constitutive funcitions from the underlying entropy principle. A brief lecture on extended thermodynamics closes the book. Many examples and exercises round off the material presendted in the chapters. The book addresses primarily advanced undergraduate students in theoretical physics, applied mathematics and materials sciences.
As the field of Microsystems expands into more disciplines and new
applications such as RF-MEMS, Optical MEMS and Bio-MEMS, thermal
management is becoming a critical issue in the operation of many
microdevices, including microelectronic chips.
This book covers all aspects of supercharging internal combustion engines. It details charging systems and components, the theoretical basic relations between engines and charging systems, as well as layout and evaluation criteria for best interaction. Coverage also describes recent experiences in design and development of supercharging systems, improved graphical presentations, and most advanced calculation and simulation tools.
By bringing together various ideas and methods for extracting the slow manifolds, the authors show that it is possible to establish a more macroscopic description in nonequilibrium systems. The book treats slowness as stability. A unifying geometrical viewpoint of the thermodynamics of slow and fast motion enables the development of reduction techniques, both analytical and numerical. Examples considered in the book range from the Boltzmann kinetic equation and hydrodynamics to the Fokker-Planck equations of polymer dynamics and models of chemical kinetics describing oxidation reactions. Special chapters are devoted to model reduction in classical statistical dynamics, natural selection, and exact solutions for slow hydrodynamic manifolds. The book will be a major reference source for both theoretical and applied model reduction. Intended primarily as a postgraduate-level text in nonequilibrium kinetics and model reduction, it will also be valuable to PhD students and researchers in applied mathematics, physics and various fields of engineering.
This book is a superb tool in virtually all application areas involving the Kinetic Theory of Gases, Rarefied Gas Dynamics, Transport Theory, and Aerosol Mechanics. It has been especially designed to serve a dual function, both as a teaching instrument either in a classroom environment or at home, and as a reference for scientists and engineers working in the fields of Rarefied Gas Dynamics and Aerosol Mechanics.
This completely revised edition of the classical book on Statistical Mechanics covers the basic concepts of equilibrium and non-equilibrium statistical physics. In addition to a deductive approach to equilibrium statistics and thermodynamics based on a single hypothesis this book treats the most important elements of non-equilibrium phenomena. Intermediate calculations are presented in complete detail. Problems at the end of each chapter help students to consolidate their understanding of the material. Beyond the fundamentals, this text demonstrates the breadth of the field and its great variety of applications.
Carl Friedrich von Weizsacker s "Aufbau der Physik," first published in 1985, was intended as an overview of his lifelong concern: an understanding of the unity of physics. That is, the idea of a quantum theory of binary alternatives (the so-called ur-theory), a unified quantum theoretical framework in which spinorial symmetry groups are considered to give rise to the structure of space and time. The book saw numerous reprints, but it was published in German only. The present edition, in English, provides a newly arranged and revised version, in which some original chapters and sections have been deleted, and a new chapter about further insights and results of ur-theoretic research of the late 1980 s and 1990 s, mainly by the work of Thomas Gornitz, has been included, as well as a general introduction to Weizsacker s Philosophy of Physics. Carl Friedrich von Weizsacker also enjoys high esteem by a much broader audience for his socio-cultural, political and religious thoughts and writings. In him the intercultural and interdisciplinary dialogue has found one of its most important proponents: a great thinker who combines the perspectives of science, philosophy, religion and politics with a view towards the challenges as well as the responsibilities of our time."
Based on practical problems in mechanical engineering, here the author develops the fundamental concepts of non-smooth mechanics and introduces the necessary background material needed to deal with mechanics involving discontinuities and non-smooth constraints.
Describes and interrelates the following processes: cooperative alpha processes in a cold liquid, structural relaxation in the glass near Tg, the Johari-Goldstein beta process, the Williams-Gotze process in a warm liquid, fast nonactivated cage rattling and boson peak, and ultraslow Fischer modes. "
The present volume studies the application of concepts from non-equilibrium thermodynamics to a variety of research topics. Emphasis is on the Maximum Entropy Production (MEP) principle and applications to Geosphere-Biosphere couplings. Written by leading researchers from a wide range of backgrounds, the book presents a first coherent account of an emerging field at the interface of thermodynamics, geophysics and life sciences.
The book unifies classical continuum mechanics and turbulence modeling, i.e. the same fundamental concepts are used to derive model equations for material behaviour and turbulence closure and complements these with methods of dimensional analysis. The intention is to equip the reader with the ability to understand the complex nonlinear modeling in material behaviour and turbulence closure as well as to derive or invent his own models. Examples are mostly taken from environmental physics and geophysics. P.A. Blythe: Non-linear far-field theories in relaxing gas flows.- Meixner: Thermodynamics of deformable materials.- A.C. Pipkin: Non-linear phenomena in continua.- R.S. Rivlin: An introduction to non-linear continuum mechanics.- G.F. Smith: The generation of integrity bases.
The utilisation of renewable energies is not at all new; in the history of mankind renewable energies have for a long time been the primary possibility of generating energy. This only changed with industrial revolution when lignite and hard coal became increasingly more important. Later on, also crude oil gained importance. Offering the advantages of easy transportation and processing also as a raw material, crude oil has become one of the prime energy carriers applied today. Moreover, natural gas used for space heating and power provision as well as a transportation fuel has become increasingly important, as it is abundantly available and only requires low investments in terms of energy conversion facilities. As fossil energy carriers were increasingly used for energy generation, at least by the industrialised countries, the application of renewable energies decreased in absolute and relative terms; besides a few exceptions, renewable energies are of secondary importance with regard to overall energy generation.
Thermodynamics is not the oldest of sciences. Mechanics can make that claim. Thermodynamicsisaproductofsomeofthegreatestscienti?cmindsofthe19thand 20th centuries. But it is suf?ciently established that most authors of new textbooks in thermodynamics ?nd it necessary to justify their writing of yet another textbook. I ?nd this an unnecessary exercise because of the centrality of thermodynamics as a science in physics, chemistry, biology, and medicine. I do acknowledge, however, that instruction in thermodynamics often leaves the student in a confused state. My attempt in this book is to present thermodynamics in as simple and as uni?ed a form as possible. As teachers we identify the failures of our own teachers and attempt to correct them. Although I personally acknowledge with a deep gratitude the appreciation for thermodynamics that I found as an undergraduate, I also realize that my teachers did not convey to me the sweeping grandeur of thermodynamics. Speci?cally the s- plicity and the power that James Clerk Maxwell found in the methods of Gibbs were not part of my undergraduate experience. Unfortunately some modern authors also seem to miss this central theme, choosing instead to introduce the thermodynamic potentials as only useful functions at various points in the development.
The first volume of this work is organized in three levels, so that the portion and importance of thermodynamics and mathematics increase from level to level. The ground level shows that basics of phase equilibria can be understood without thermodynamics provided the concept of chemical potential is introduced early. The intermediate level introduces thermodynamics, culminating in the Gibbs energy as the arbiter for equilibrium. At the third level the accent is on binary systems, where one or more phases are solutions of the components. Priority is given throughout to the thermodynamic assessment of experimental data. 200 exercises are included with solutions.
The contents of this book are the result of work performed in the past three years to provide some answers to questions raised by several colleagues wo- inginastrophysics. Examiningseveraltransportprocessesinplasmasrelated to dissipative e?ects in phenomena such as cooling ?ows, propagation of sound waves, thermal conduction in the presence of magnetic ?elds, an- lar momentum transfer in accretion disks, among many, one ?nds a rather common pattern. Indeed when values for transport coe?cients are required the overwhelming majority of authors refer to the classical results obtained by L. Spitzer and S. Braginski over forty years ago. Further, it is also often mentioned that under the prescribed working conditions the values of such coe?cients are usually insu?cient to provide agreement with observations. The methodology followed by these authors is based upon Landau's - oneering idea that collisions in plasmas may be substantially accounted for when viewed as a di?usive process. Consequently the ensuing basic kinetic equation is the Fokker-Planck version of Boltzmann's equation as essentially proposed by Landau himself nearly 70 years ago. Curiously enough the magni?cent work of the late R. Balescu in both Classical and Non-Classical transport in plasmas published in 1988 and also based on the Fokker-Planck equation is hardly known in the astrophysical audience. The previous work of Spitzer and Braginski is analyzed with much more rigorous vision in his two books on the subject.
Modern energetic materials include explosives, blasting powders, pyrotechnic m- tures and rocket propellants [1, 2]. The study of high-temperature decomposition of condensed phases of propellants and their components (liquid, solid and hybrid) is currently of special importance for the development of space-system engineering [3, 4]. To better understand the burning mechanisms (stationary, nonstationary, - steady) of composite solid propellants and their components, information about the macrokinetics of their high-temperature decomposition is required [5]. To be able to evaluate the ignition parameters and conditions of safe handling of heat-affected explosives, one needs to know the kinetic constants of their high-temperature - composition. The development of new composite solid propellants characterized by high performance characteristics (high burning rates, high thermal stability, stability to intrachamber perturbations, and other aspects) is not possible without quanti- tive data on the high-temperature decomposition of composite solid propellants and their components [6]. The same reasons have resulted in signi?cant theoretical and practical interest in the high-temperature decomposition of components of hybrid propellants. It is known that hybrid propellants have not been used very widely due to the low bu- ing (pyrolysis) rates of the polymer blocks in the combustion chambers of hybrid rocket engines. To increase the burning rates it is necessary to obtain information about their relationships to the corresponding kinetic and thermophysical prop- ties of the fuels.
The book constitutes a particularly complete and original collection of ideas, models, numerical methods and experimental tools which will prove invaluable in the study of microscale and nanoscale heat transfer. It should be of interest to research scientists and thermal engineers who wish to carry out theoretical research or metrology in this field, but also to physicists concerned with the problems of heat transfer, or teachers requiring a solid foundation for an undergraduate university course in this area.
MTDSC provides a step-change increase in the power of calorimetry to characterize virtually all polymer systems including curing systems, blends and semicrystalline polymers. It enables hidden transitions to be revealed, miscibility to be accurately assessed, and phases and interfaces in complex blends to be quantified. It also enables crystallinity in complex systems to be measured and provides new insights into melting behaviour. All of this is achieved by a simple modification of conventional DSC. In 1992 a new calorimetric technique was introduced that superimposed a small modulation on top of the conventional linear temperature program typically used in differential scanning calorimetry. This was combined with a method of data analysis that enabled the sample s response to the linear component of the temperature program to be separated from its response to the periodic component. In this way, for the first time, a signal equivalent to that of conventional DSC was obtained simultaneously with a measure of the sample s heat capacity from the modulation. The new information this provided sparked a revolution in scanning calorimetry by enabling new insights to be gained into almost all aspects of polymer characteristics. This book provides both a basic and advanced treatment of the theory of the technique followed by a detailed exposition of its application to reacting systems, blends and semicrystalline polymers by the leaders in all of these fields. It is an essential text for anybody interested in calorimetry or polymer characterization, especially if they have found that conventional DSC cannot help them with their problems.
This monograph develops a unified microscopic basis for phases and phase changes of bulk matter and small systems, based on classical physics. It describes the thermodynamics of ensembles of particles and explains phase transition in gaseous and liquid systems. The origins are derived from simple but physically relevant models of how transitions occur between rigid and fluid states, of how phase equilibria arise, and how they differ for small and large systems.
Here is a new method for calculating heat transfer in coupled convective-conductive fluid-wall systems under periodical intensity oscillations in fluid flow. The true steady state mean value of the heat transfer coefficient must be multiplied by a newly defined coupling factor, which is always smaller than one and depends on the coupling parameters Biot number, Fourier number as well as dimensionless geometry and oscillation parameters. Includes characteristic solved problems, with tables and diagrams. |
You may like...
Thermochemical Conversion Processes for…
Falah Alobaid, Jochen Stroehle
Hardcover
R1,244
Discovery Miles 12 440
Thermodynamics - Fundamental Principles…
Antonio Saggion, Rossella Faraldo, …
Hardcover
R2,526
Discovery Miles 25 260
Frontiers In Entropy Across The…
M. Zuhair Nashed, Willi Freeden
Hardcover
R4,984
Discovery Miles 49 840
High Speed Catamarans and Multihulls…
Liang Yun, Alan Bliault, …
Hardcover
R7,207
Discovery Miles 72 070
|