Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Physics > Thermodynamics & statistical physics > Thermodynamics
This practical introduction to the analysis of data collected from reliability studies offers clear, detailed explanations of the best and most up-to-date techniques available. Topics include survival analysis with covariates, the assessment of systems performance, reliability growth models, dependency (which encompasses both engineering and statistical approaches), and practical aspects of analysis. A wealth of interesting case studies appear throughout the text, lending "real-world" examples to the more theoretical discussions. Throughout, the authors stress the need for investigators to understand the background and nature of their data if they are to select the most appropriate analysis method. They also provide in-depth treatments of the mathematical and statistical bases underlying each technique. Accessible and comprehensive, the book will be welcomed by students, professionals, and statisticians who are interested in the practical aspects of reliability data analysis.
There are many thermodynamics introductory texts on the market, yet most provide a presentation that is at a level to high for those new to the field This second edition of Thermodynamics continues to provide an accessible introduction to thermodynamics, which maintains an appropriate rigor to prepare newcomers for subsequent, more advanced topics. The book presents a logical methodology for solving problems in the context of conservation laws and property labels. The author elucidates the terms around which thermodynamics has historically developed such as work, temperature, entropy, and energy. Using a pedagogical approach that builds from basic principles to laws and eventually corollaries of the law, the text will enable students to think in clear and correct thermodynamic terms as well as solve real engineering problems. For those just beginning their studies in the field, Thermodynamics, Second Edition provides the core fundamentals in a rigorous, accurate, and accessible presentation.
This book treats atmospheric convection from different angles including the theoretical aspects of atmospheric deep convection and the weather phenomena related to convection. The problem of boundary conditions that result in severe convective weather patterns is explored within the framework of worldwide climatology. The book bridges the gap between theory and its operational application both within the fields of weather forecasting and that of risk management.
The present volume in the New Series of Landolt-B rnstein provides critically evaluated data on phase diagrams, crystallographic and thermodynamic data of ternary alloy systems. The often conflicting literature data have been critically evaluated by Materials Science International Team, MSIT, a team working together for many years, and with expertise in a broad range of methods, materials and applications.
The present volume in the New Series of Landolt-B rnstein provides critically evaluated data on phase diagrams, crystallographic and thermodynamic data of ternary alloy systems. The often conflicting literature data have been critically evaluated by Materials Science International Team, MSIT, a team working together for many years, and with expertise in a broad range of methods, materials and applications.
The present volume in the New Series of Landolt-Bornstein provides critically evaluated data on phase diagrams, crystallographic and thermodynamic data of ternary alloy systems. Reliable phase diagrams provide materials scientists and engineers with basic information important for fundamental research, development and optimization of materials. The often conflicting literature data have been critically evaluated by Materials Science International Team, MSIT(r), a team working together since many years, and with expertise in a broad range of methods, materials and applications. All evaluation reports published here have undergone a thorough review process in which the reviewers had access to all the original data. The data for each ternary system are provided in a standard format which includes text, tables and diagrams. The topics presented are literature data, binary systems, solid phases, pseudobinary systems, invariant equilibria, liquidus, solidus, and solvus surfaces, isothermal sections, temperature-composition sections, thermodynamics, materials properties and applications, and miscellanea. Finally, a detailed bibliography of all cited references is provided. In the present volume IV/11C selected non-ferrous-metal systems are considered, especially selected nuclear materials and engineering systems in this Part
In this compelling, and important book, John Schmitz brings order
to the world of chaos that surrounds us. The Second Law of Life
refers to the second law of thermodynamics, entropy, which is an
omnipresent force that quietly and crucially determines every
aspect of our society, culture and daily lives. Unless we come to
understand entropy, future generations will face consequences of
the unstoppable laws of physics.
The present volume in the New Series of Landolt-B rnstein provides critically evaluated data on phase diagrams, and crystallographic and thermodynamic data of ternary alloy systems. The data for each ternary system are provided in a standard format with text, tables and diagrams. The volume is a standard reference book with selected and easily retrievable data from the fields of physics and chemistry collected by acknowledged international scientists.
"Both superb and essential... Succi, with clarity and wit, takes us from quarks and Boltzmann to soft matter - precisely the frontier of physics and life." Stuart Kauffman, MacArthur Fellow, Fellow of the Royal Society of Canada, Gold Medal Accademia Lincea We live in a world of utmost complexity, outside and within us. There are thousand of billions of billions of stars out there in the Universe, a hundred times more molecules in a glass of water, and another hundred times more in our body, all working in sync to keep us alive and well. At face value, such numbers spell certain doom for our ability to make any sense at all of the world around and within us. And yet, they don't. Why, and how - this book endeavours to provide an answer to these questions with specific reference to a selected window of the physics-biology interface. The story unfolds over four main Parts. Part I provides an introduction to the main organizational principles which govern the functioning of complex systems in general, such as nonlinearity, nonlocality and ultra-dimensions. Part II deals with thermodynamics, the science of change, starting with its historical foundations laid down in the 19th century, and then moving on to its modern and still open developments in connection with biology and cosmology. Part III deals with the main character of this book, free energy, and the wondrous scenarios opened up by its merger with the modern tools of statistical physics. It also describes the basic facts about soft matter, the state of matter most relevant to biological organisms. Finally, Part IV discusses the connection between time and complexity, and its profound implications on the human condition, i.e. the one-sided nature of time and the awareness of human mortality. It concludes with a few personal considerations about the special place of emotions and humility in science.
This is a comprehensive discussion of complexity as it arises in physical, chemical and biological systems, as well as in mathematical models of nature. The aim of this book is to illustrate the ways in which complexity manifests itself and to introduce a sequence of increasingly sharp mathematical methods for the classification of complex behavior. This book will be of interest to graduate students and researchers in physics (nonlinear dynamics, fluid dynamics, solid-state, cellular automata, stochastic processes, statistical mechanics and thermodynamics), mathematics (dynamical systems, ergodic and probability theory), information and computer science (coding, information theory and algorithmic complexity), electrical engineering and theoretical biology.
The well known transport laws of Navier-Stokes and Fourier fail for the simulation of processes on lengthscales in the order of the mean free path of a particle that is when the Knudsen number is not small enough. Thus, the proper simulation of flows in rarefied gases requires a more detailed description. This book discusses classical and modern methods to derive macroscopic transport equations for rarefied gases from the Boltzmann equation, for small and moderate Knudsen numbers, i.e. at and above the Navier-Stokes-Fourier level. The main methods discussed are the classical Chapman-Enskog and Grad approaches, as well as the new order of magnitude method, which avoids the short-comings of the classical methods, but retains their benefits. The relations between the various methods are carefully examined, and the resulting equations are compared and tested for a variety of standard problems. The book develops the topic starting from the basic description of an ideal gas, over the derivation of the Boltzmann equation, towards the various methods for deriving macroscopic transport equations, and the test problems which include stability of the equations, shock waves, and Couette flow.
Exactly solvable models are very important in physics. They are important not just from a theoretical point of view but also from the experimentalist's perspective because in such cases theoretical results and experimental results can be compared without ambiguity. This 1999 book is about an important class of exactly solvable models in physics. The subject area is the Bethe-ansatz approach for a number of one-dimensional models, and the setting up of equations within this approach to determine the thermodynamics of these systems. It is a topic that crosses the boundaries between condensed matter physics, mathematics and field theory. The derivation and application of thermodynamic Bethe-ansatz equations for one-dimensional models are explained in detail. This technique is indispensable for physicists studying the low-temperature properties of one-dimensional substances. This book, written by one of the top physicists in this field, and the originator of much of the work in the subject, will be of great interest to theoretical condensed matter physicists.
This book describes advances in the application of chaos theory to classical scattering and nonequilibrium statistical mechanics generally, and to transport by deterministic diffusion in particular. The author presents the basic tools of dynamical systems theory, such as dynamical instability, topological analysis, periodic-orbit methods, Liouvillian dynamics, dynamical randomness and large-deviation formalism. These tools are applied to chaotic scattering and to transport in systems near equilibrium and maintained out of equilibrium. Chaotic Scattering is illustrated with disk scatterers and with examples of unimolecular chemical reactions and then generalized to transport in spatially extended systems. This book will be bought by researchers interested in chaos, dynamical systems, chaotic scattering, and statistical mechanics in theoretical, computational and mathematical physics and also in theoretical chemistry.
Numerous fundamental properties of quantum information measurement are developed, including the von Neumann entropy of a statistical operator and its limiting normalized version, the entropy rate. Use of quantum-entropy quantities is made in perturbation theory, central limit theorems, thermodynamics of spin systems, entropic uncertainty relations, and optical communication. This new softcover corrected reprint contains summaries of recent developments added to the ends of the chapters.
Studies of surfaces and interactions between dissimilar materials or phases are vital for modern technological applications. Computer simulation methods are indispensable in such studies and this book contains a substantial body of knowledge about simulation methods as well as the theoretical background for performing computer experiments and analyzing the data. The book is self-contained, covering a range of topics from classical statistical mechanics to a variety of simulation techniques, including molecular dynamics, Langevin dynamics and Monte Carlo methods. A number of physical systems are considered, including fluids, magnets, polymers, granular media, and driven diffusive systems. The computer simulation methods considered include both standard and accelerated versions. The simulation methods are clearly related to the fundamental principles of thermodynamics and statistical mechanics.
- It provides a rigorous mathematical and physical basis to techniques that are often introduced on empirical basis - While the book covers a broad range of techniques, it starts at a basic theoretical level. This gives the book a strong foundation and makes it accessible to students from various backgrounds. - Has a computational focus unlike many competing titles
Unlike the traditional approach to thermodynamics, this book begins with a brief exposition of hydrodynamics. At this stage, the development is limited to potential flows, because, until recently, that is all that could be done, but also for didactic reasons. However, the reader will find that the situation has changed radically with the discovery of Conservative Hydrodynamics.At the core of thermodynamics is the Gibbsean minimum energy principle. In this book, it is generalized to include the hydrodynamical degrees of freedom; that is, localized as a field theory of density, pressure, temperature and entropy. The theory is referred to as local thermodynamics, as opposed to traditional, global thermodynamics where the main foundation is the variational principle of Gibbs, with a modification recommended by Prigogine.This book exists because there is (or was) no satisfactory theory of the dynamical metric interacting with extended distributions of matter. It will be shown that any theory of interacting fields that includes the Einsteinian metric must be based on an action principle.This allows us, for the first time, to use 'energy' as a precise concept in vortex dynamics. Sample applications include rotating planets, Couette flow, stresses in fluids (inside the meniscus, negative pressures), immiscible fluids, amongst others.
This book deals with the various thermodynamic concepts used for the analysis of nonlinear dynamical systems. The most important invariants used to characterize chaotic systems are introduced in a way that stresses the interconnections with thermodynamics and statistical mechanics. Among the subjects treated are probabilistic aspects of chaotic dynamics, the symbolic dynamics technique, information measures, the maximum entropy principle, general thermodynamic relations, spin systems, fractals and multifractals, expansion rate and information loss, the topological pressure, transfer operator methods, repellers and escape. The more advanced chapters deal with the thermodynamic formalism for expanding maps, thermodynamic analysis of chaotic systems with several intensive parameters, and phase transitions in nonlinear dynamics.
The problem of deriving irreversible thermodynamics from the re versible microscopic dynamics has been on the agenda of theoreti cal physics for a century and has produced more papers than can be digested by any single scientist. Why add to this too long list with yet another work? The goal is definitely not to give a gen eral review of previous work in this field. My ambition is rather to present an approach differing in some key aspects from the stan dard treatments, and to develop it as far as possible using rather simple mathematical tools (mainly inequalities of various kinds). However, in the course of this work I have used a large number of results and ideas from the existing literature, and the reference list contains contributions from many different lines of research. As a consequence the reader may find the arguments a bit difficult to follow without some previous exposure to this set of problems."
Entropy and entropy generation play essential roles in our understanding of many diverse phenomena ranging from cosmology to biology. Their importance is manifest in areas of immediate practical interest such as the provision of global energy as well as in others of a more fundamental flavour such as the source of order and complexity in nature. They also form the basis of most modern formulations of both equilibrium and nonequilibrium thermodynamics. Today much progress is being made in our understanding of entropy and entropy generation in both fundamental aspects and application to concrete problems. The purpose of this volume is to present some of these recent and important results in a manner that not only appeals to the entropy specialist but also makes them accessible to the nonspecialist looking for an overview of the field. This book contains fourteen contributions by leading scientists in their fields. The content covers such topics as quantum thermodynamics, nonlinear processes, gravitational and irreversible thermodynamics, the thermodynamics of Taylor dispersion, higher order transport, the mesoscopic theory of liquid crystals, simulated annealing, information and biological aspects, global energy, photovoltaics, heat and mass transport and nonlinear electrochemical systems. Audience: This work will be of value to physicists, chemists, biologists and engineers interested in the theory and applications of entropy and its generation.
Understanding the structural and thermodynamic properties of surfaces, interfaces, and membranes is important for both fundamental and practical reasons. Important applications include coatings, dispersants, encapsulating agents, and biological materials. Soft materials, important in the development of new materials and the basis of many biological systems, cannot be designed using trial and error methods due to the multiplicity of components and parameters. While these systems can sometimes be analyzed in terms of microscopic mixtures, it is often conceptually simpler to regard them as dispersions and to focus on the properties of the internal interfaces found in these systems. The basic physics centers on the properties of quasi-two-dimensional systems embedded in the three-dimensional world, thus exhibiting phenomena that do not exist in bulk materials. This approach is the basis behind the theoretical presentation of Statistical Thermodynamics of Surfaces, Interfaces, and Membranes. The approach adapted allows one to treat the rich diversity of phenomena investigated in the field of soft matter physics (including both colloid/interface science as well as the materials and macromolecular aspects of biological physics) such as interfacial tension, the roughening transition, wetting, interactions between surfaces, membrane elasticity, and self-assembly. Presented as a set of lecture notes, this book is aimed at physicists, physical chemists, biological physicists, chemical engineers, and materials scientists who are interested in the statistical mechanics that underlie the macroscopic, thermodynamic properties of surfaces, interfaces, and membranes. This paperback edition contains all the material published in the original hard-cover edition as well as additional clarifications and explanations.
The series of texts Classical Theoretical Physics is based on the highly successful series of courses given by Walter Greiner and his colleagues at the Johann Wolfgang Goethe University in Frankfurt am Main, Germany. Intended for advanced undergraduates and beginning graduate students, the volumes in this series will provide not only a complete survey of classical theoretical physics but also an enormous number of worked examples and problems to show students clearly how to apply the underlying principles to realistic problems. Thermodynamics and Statistical Physics covers: Thermodynamics - basic definitions of thermodynamics, equilibrium, state variables - the first and second laws - phase transitions and chemical reactions - thermodynamic potentials Statistical Mechanics - statistics of microscopic states and connection to the entropy - the microcanonical, canonical and grand canonical ensembles - applications of Boltzmann statistics Quantum Statistics - the density operator - many-particle wave functions - ideal quantum systems - the ideal Bose gas and applications to blackbody radiation, Kirchhoff's law, and lattice vibrations - the ideal Fermi gas and applications to condensed-matter physics, astrophysics, and nuclear physics - relativistic Bose and Fermi gases and applications to particle physics Real Gases and Phase Transitions - real gases and the virial expansion - classification of phase transitions and critical indices - the Ising and Heisenberg models
Ideal for one- or two-semester courses that assume elementary knowledge of calculus This text presents the fundamental concepts of thermodynamics and applies these to problems dealing with properties of materials, phase transformations, chemical reactions, solutions and surfaces.utilizing principles of statistical mechanics to illustrate key concepts from a microscopic perspective, as well as develop equations of kinetic theory. Discusses the second law of thermodynamics-considering entropy as the indicator of energy quality. Principles of Thermodynamics provides end-of-chapter question and problem sets, some using MathcadT and MathematicaT a useful glossary containing important symbols, definitions, and units appendices covering multivariable calculus and valuable numerical methods and examines the basic ideas of energy, entropy, and free energy chemical reactions neutral and ionic solutions and electrochemical systems phase diagrams for binary and ternary systems surface effects in single component and multicomponent systems the thermodynamics of steady-state systems polymers and nonequilibrium systems Principles of Thermodynamics is an authoritative text suitable for upper-level undergraduate and graduate students in chemistry, physics, geosciences, and engineering.
Recent years have witnessed a resurgence in the kinetic approach to dynamic many-body problems. Modern kinetic theory offers a unifying theoretical framework within which a great variety of seemingly unrelated systems can be explored in a coherent way. Kinetic methods are currently being applied in such areas as the dynamics of colloidal suspensions, granular material flow, electron transport in mesoscopic systems, the calculation of Lyapunov exponents and other properties of classical many-body systems characterised by chaotic behaviour. The present work focuses on Brownian motion, dynamical systems, granular flows, and quantum kinetic theory.
The control of open quantum systems and their associated quantum thermodynamic properties is a topic of growing importance in modern quantum physics and quantum chemistry research. This unique and self-contained book presents a unifying perspective of such open quantum systems, first describing the fundamental theory behind these formidably complex systems, before introducing the models and techniques that are employed to control their quantum thermodynamics processes. A detailed discussion of real quantum devices is also covered, including quantum heat engines and quantum refrigerators. The theory of open quantum systems is developed pedagogically, from first principles, and the book is accessible to graduate students and researchers working in atomic physics, quantum information, condensed matter physics, and quantum chemistry. |
You may like...
Thermal Physics and Thermal Analysis…
Jaroslav Sestak, Pavel Hubik, …
Hardcover
R5,545
Discovery Miles 55 450
High Speed Catamarans and Multihulls…
Liang Yun, Alan Bliault, …
Hardcover
R7,207
Discovery Miles 72 070
Thermochemical Conversion Processes for…
Falah Alobaid, Jochen Stroehle
Hardcover
R1,244
Discovery Miles 12 440
Molecular Physical Chemistry for…
Florin Emilian Danes, Silvia Danes, …
Hardcover
R2,522
Discovery Miles 25 220
Frontiers In Entropy Across The…
M. Zuhair Nashed, Willi Freeden
Hardcover
R4,984
Discovery Miles 49 840
|