![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Thermodynamics & statistical physics > Thermodynamics
The book provides design engineers an elemental understanding of the variables that influence pressure drop and heat transfer in plain and micro-fin tubes to thermal systems using liquid single-phase flow in different industrial applications. It also provides design engineers using gas-liquid, two-phase flow in different industrial applications the necessary fundamentals of the two-phase flow variables. The author and his colleagues were the first to determine experimentally the very important relationship between inlet geometry and transition. On the basis of their results, they developed practical and easy to use correlations for the isothermal and non-isothermal friction factor (pressure drop) and heat transfer coefficient (Nusselt number) in the transition region as well as the laminar and turbulent flow regions for different inlet configurations and fin geometry. This work presented herein provides the thermal systems design engineer the necessary design tools. The author further presents a succinct review of the flow patterns, void fraction, pressure drop and non-boiling heat transfer phenomenon and recommends some of the well scrutinized modeling techniques.
Atmospheric Thermodynamics provides a comprehensive treatment of a subject that can often be intimidating. The text analyses real-life problems and applications of the subject, alongside of guiding the reader through the fundamental basics and covering the first and second laws and the ideal gas law, followed by an emphasis on moist processes in Earth's atmosphere. Water in all its phases is a critical component of weather and the Earth's climate system. With user-friendly chapters that include energy conservation and water and its transformations, the authors write with a willingness to expose assumptions and approximations usually absent in other textbooks. History is woven into the text to provide a context for the time evolution of thermodynamics and its place in atmospheric science and demonstrating how physical reasoning leads to correct explanations of everyday phenomena. Many of the experiments described were done using inexpensive instruments to take advantage of the earth's atmosphere as a freely accessible thermodynamics library. This second edition provides updated treatments of atmospheric measurements and substantially expanded sections that include atmospheric applications of the first and second laws and energy exchange between humans and their atmospheric environment. With 400+ thought provoking problems and 350 references with annotated notes and further reading suggestions, this second edition provides a basic understanding of the fundamentals of this subject while still being a comprehensive reference guide for those working in the field of atmospheric and environmental sciences.
This open access book introduces and explains machine learning (ML) algorithms and techniques developed for statistical inferences on a complex process or system and their applications to simulations of chemically reacting turbulent flows. These two fields, ML and turbulent combustion, have large body of work and knowledge on their own, and this book brings them together and explain the complexities and challenges involved in applying ML techniques to simulate and study reacting flows. This is important as to the world's total primary energy supply (TPES), since more than 90% of this supply is through combustion technologies and the non-negligible effects of combustion on environment. Although alternative technologies based on renewable energies are coming up, their shares for the TPES is are less than 5% currently and one needs a complete paradigm shift to replace combustion sources. Whether this is practical or not is entirely a different question, and an answer to this question depends on the respondent. However, a pragmatic analysis suggests that the combustion share to TPES is likely to be more than 70% even by 2070. Hence, it will be prudent to take advantage of ML techniques to improve combustion sciences and technologies so that efficient and "greener" combustion systems that are friendlier to the environment can be designed. The book covers the current state of the art in these two topics and outlines the challenges involved, merits and drawbacks of using ML for turbulent combustion simulations including avenues which can be explored to overcome the challenges. The required mathematical equations and backgrounds are discussed with ample references for readers to find further detail if they wish. This book is unique since there is not any book with similar coverage of topics, ranging from big data analysis and machine learning algorithm to their applications for combustion science and system design for energy generation.
This book collects together the lecture courses and seminars given at the Les Houches Summer School 2008 on Long-Range Interacting Systems. Leading scientists in different fields of mathematics and physics present their views on this fast growing and interdisciplinary field of research, by venturing upon fundamental problems of probability, transport theory, equilibrium and non-equilibrium statistical mechanics, condensed matter physics, astrophysics and cosmology, physics of plasmas, and hydrodynamics. The thermodynamic and dynamical properties of systems with long-range interactions were poorly understood until a few years ago. Substantial progress has been made only recently by realizing that the lack of additivity induced by long-range interactions does not hinder the development of a consistent thermodynamic formalism. This book reviews the state-of-the-art developments in this field and provides an essential background to future studies. All chapters are written from a pedagogical perspective, making the book accessible to masters and PhD students and all researchers wishing to enter this field.
This is a textbook on thermodynamics of materials for junior/senior undergraduate students and first-year graduate students as well as a reference book for researchers who would like to refresh their understanding of thermodynamics. The textbook employs a plain language to explain the thermodynamic concepts and quantities. It embraces the mathematical beauty and rigor of Gibbs thermodynamics through the fundamental equation of thermodynamics from which all thermodynamic properties of a material can be derived. However, a reader with basic first-year undergraduate calculus skills will be able to get through the book without difficulty. One unique feature of this textbook is the descriptions of the step-by-step procedures for computing all the thermodynamic properties from the fundamental equation of thermodynamics and all the thermodynamic energies from a set of common, experimentally measurable thermodynamic properties, supplemented with ample numerical examples. Another unique feature of this textbook is its emphasis on the concept of chemical potential and its applications to phase equilibria in single component systems and binary solutions, chemical reaction equilibria, and lattice and electronic defects in crystals. The concept of chemical potential is introduced at the very beginning of the book together with temperature and pressure. It avoids or minimizes the use of terms such as molar Gibbs free energy, partial molar Gibbs free energy, or Gibbs potential because molar Gibbs free energy or partial molar Gibbs free energy is precisely the chemical potential of a material or a component. It is the chemical potential that determines the stability of chemical species, compounds, and phases and their tendency to chemically react to form new species, transform to new physical state, and migrate from one spatial location to another. Therefore, it is the chemical potential differences or gradients that drive essentially all materials processes of interest. A reader after finishing reading the book is expected to not only achieve a high-level fundamental understanding of thermodynamics but also acquire the analytical skills of applying thermodynamics to determining materials equilibrium and driving forces for materials processes.
While systems at equilibrium are treated in a unified manner through the partition function formalism, the statistical physics of out-of-equilibrium systems covers a large variety of situations that are often without apparent connection. This book proposes a unified perspective on the whole set of systems near equilibrium: it brings out the profound unity of the laws which govern them and gathers a large number of results usually fragmented in the literature. The reader will find in this book a pedagogical account of the fundamental results: physical origins of irreversibility, fluctuation-dissipation theorem, Boltzmann equation, linear response, Onsager relations, transport phenomena, Langevin and Fokker-Planck equations. The book's comprehensive organisation makes it valuable both as a textbook about irreversible phenomena and as a reference book for researchers.
This book looks at global atmospheric processes from a physical standpoint using available current and past observational data taken from measurements of relevant atmospheric parameters. It describes various aspects of the current atmospheric state and its future evolution, focusing primarily on the energetic balance of the Earth and atmosphere, and taking into consideration the multi-faceted global equilibrium between these two systems, carbon, and water. The analysis presented in this book restricts itself to those objects and processes that allow us to obtain reliable conclusions and numerical estimations, in contrast to current climate models with much larger numbers of parameters for describing the same problems. As a result, in spite of the roughness of numerical parameters, the book unveils a reliable and transparent physical picture of energetic phenomena in the global atmosphere. In particular, it shows that approximately only one-fourth of atmospheric water returns from the atmosphere to the Earth in the form of free molecules. It was shown that the contemporary warming of our planet has an anthropogenic character, and that the average global temperature increases due to an increase of the concentration of atmospheric CO2 molecules, via an increase in atmospheric moisture, as well as an increase in the amount of aerosols in the atmosphere. Accumulation of atmospheric carbon dioxide plays a subsidiary role in this process and gives approximately one-third in a change of the global temperature, while an increase in the amount of atmospheric water by as little as only 0.3% per year explains the observed warming of the Earth. The book shows how the greenhouse instability of the atmosphere evidently has its origins in the Eocene epoch, presenting an analysis of the influence of various types of global energetic processes on the climate that differs from the official stance on these problems.
This essential provides an overview of the changes in our climate, their causes and their consequences. Today, humanity's energy needs are largely met in ways that are harmful to the climate. The alternative to this, solar energy, would satisfy our needs thousands of times over. But this option is far too little used for mainly economic reasons. This essential then discusses the energy converters that can be used to make solar energy available. Some other modern energy sources, such as nuclear power, are either inadequate, still utopian, or otherwise environmentally harmful. An outlook shows that our energy problem could easily be solved with economic reason by global use of solar energy. The climate could thus still be stabilized in time. This book is a translation of the original German 1st edition Unser Klima und das Energieproblem by Klaus Stierstadt, published by Springer Fachmedien Wiesbaden GmbH, part of Springer Nature in 2020. The translation was done with the help of artificial intelligence (machine translation by the service DeepL.com). A subsequent human revision was done primarily in terms of content, so that the book will read stylistically differently from a conventional translation. Springer Nature works continuously to further the development of tools for the production of books and on the related technologies to support the authors.
This is the physical chemistry textbook for students with an affinity for computers! It offers basic and advanced knowledge for students in the second year of chemistry masters studies and beyond. In seven chapters, the book presents thermodynamics, chemical kinetics, quantum mechanics and molecular structure (including an introduction to quantum chemical calculations), molecular symmetry and crystals. The application of physical-chemical knowledge and problem solving is demonstrated in a chapter on water, treating both the water molecule as well as water in condensed phases. Instead of a traditional textbook top-down approach, this book presents the subjects on the basis of examples, exploring and running computer programs (Mathematica (R)), discussing the results of molecular orbital calculations (performed using Gaussian) on small molecules and turning to suitable reference works to obtain thermodynamic data. Selected Mathematica (R) codes are explained at the end of each chapter and cross-referenced with the text, enabling students to plot functions, solve equations, fit data, normalize probability functions, manipulate matrices and test physical models. In addition, the book presents clear and step-by-step explanations and provides detailed and complete answers to all exercises. In this way, it creates an active learning environment that can prepare students for pursuing their own research projects further down the road. Students who are not yet familiar with Mathematica (R) or Gaussian will find a valuable introduction to computer-based problem solving in the molecular sciences. Other computer applications can alternatively be used. For every chapter learning goals are clearly listed in the beginning, so that readers can easily spot the highlights, and a glossary in the end of the chapter offers a quick look-up of important terms.
Survival of the fittest" is a tautology, because those that are "fit" are the ones that survive, but to survive, a species must be "fit". Modern evolutionary theory avoids the problem by defining fitness as reproductive success, but the complexity of life that we see today could not have evolved based on selection that favors only reproductive ability. There is nothing inherent in reproductive success alone that could result in higher forms of life. Evolution from a Thermodynamic Perspective presents a non-circular definition of fitness and a thermodynamic definition of evolution. Fitness means maximization of power output, necessary to survive in a competitive world. Evolution is the "storage of entropy". "Entropy storage" means that solar energy, instead of dissipating as heat in the Earth, is stored in the structure of living organisms and ecosystems. Part one explains this in terms comprehensible to a scientific audience beyond biophysicists and ecosystem modelers. Part two applies thermodynamic theory in non-esoteric language to sustainability of agriculture, and to conservation of endangered species. While natural systems are stabilized by feedback, agricultural systems remain in a mode of perpetual growth, pressured by balance of trade and by a swelling population. The constraints imposed by thermodynamic laws are being increasingly felt as economic expansion destabilizes resource systems on which expansion depends.
This textbook introduces the molecular side of physical chemistry. It offers students and practitioners a new approach to the subject by presenting numerous applications and solved problems that illustrate the concepts introduced for varied and complex technical situations. The book offers a balance between theory, tools, and practical applications. The text aims to be a practical manual for solving engineering problems in industries where processes depend on the chemical composition and physical properties of matter. The book is organized into three main topics: (I) the molecular structure of matter, (II) molecular models in thermodynamics, and (III) transport phenomena and mechanisms. Part I presents methods of analysis of the molecular behavior in a given system, while the following parts use these methods to study the equilibrium states of a material system and to analyze the processes that can take place when the system is in a state of non-equilibrium, in particular the transport phenomena. Molecular Physical Chemistry for Engineering Applications is designed for upper-level undergraduate and graduate courses in physical chemistry for engineers, applied physical chemistry, transport phenomena, colloidal chemistry, and transport/transfer processes. The book will also be a valuable reference guide for engineers, technicians, and scientists working in industry. Offers modeling techniques and tools for solving exercises and practical cases; Provides solutions and conclusions so students can follow results more closely; Step-by-step problem solving enables students to understand how to approach complex issues.
Modelling of heterogeneous processes, such as electrochemical
reactions, extraction or ion-exchange, usually requires solving the
transport problem associated to the process. Since the processes at
the phase boundary are described by scalar quantities and transport
quantities are vectors or tensors, coupling of them can take place
only via conservation of mass, charge or momentum. In this book,
transport of ionic species is addressed in a versatile manner,
emphasizing the mutual coupling of fluxes in particular. Treatment
is based on the formalism of irreversible thermodynamics, i.e. on
linear (ionic) phenomenological equations, from which the most
frequently used Nernst-Planck equation is derived. Limitations and
assumptions made are thoroughly discussed.
This book offers a comprehensive survey of basic elements of nuclear dynamics at low energies and discusses similarities to mesoscopic systems. It addresses systems with finite excitations of their internal degrees of freedom, so that their collective motion exhibits features typical for transport processes in small and isolated systems. The importance of quantum aspects is examined with respect to both the microscopic damping mechanism and the nature of the transport equations. The latter must account for the fact that the collective motion is self-sustained. This implies highly nonlinear couplings between internal and collective degrees of freedom --- different to assumptions made in treatments known in the literature. A critical discussion of the use of thermal concepts is presented. The book can be considered self-contained. It presents existing models, theories and theoretical tools, both from nuclear physics and other fields, which are relevant to an understanding of the observed physical phenomena.
This book provides a didactic derivation of the main theories of thermotropic and lyotropic liquid crystals, revealing the common molecular-theoretic framework that underpins both theories. This unified context will help young researchers in coming to grips with the basics of the simplest of liquid crystals, being uniaxial nematic liquid crystals, easing them into the intricacies of more complex forms of such materials irrespective of whether they are thermotropic or lyotropic. The coverage provides a theoretical understanding of the phase behaviour, that is, what drives molecules and particles to spontaneously align themselves, as well as an appreciation of the role of entropy, energy and so on. The focus here is on the main theories for the isotropic-nematic transition, being the Maier-Saupe and the Onsager theories, and how they are derived from a common description, known as (classical) density functional theory (DFT). This book will be a valuable resource for senior undergraduate and graduate students, and experimentalists and engineers who feel intimidated by more formal or rigorous theoretical accounts and textbooks. Exercises at the end of each chapter help the reader to apply the basic concepts also to other types of liquid crystal, in particular the smectic liquid crystal.
This thesis establishes a multifaceted extension of the deterministic control framework that has been a workhorse of nonequilibrium statistical mechanics, to stochastic, discrete, and autonomous control mechanisms. This facilitates the application of ideas from stochastic thermodynamics to the understanding of molecular machines in nanotechnology and in living things. It also gives a scale on which to evaluate the nonequilibrium energetic efficiency of molecular machines, guidelines for designing effective synthetic machines, and a perspective on the engineering principles that govern efficient microscopic energy transduction far from equilibrium. The thesis also documents the author's design, analysis, and interpretation of the first experimental demonstration of the utility of this generally applicable method for designing energetically-efficient control in biomolecules. Protocols designed using this framework systematically reduced dissipation, when compared to naive protocols, in DNA hairpins across a wide range of experimental unfolding speeds and between sequences with wildly different physical characteristics.
This book highlights the design of a new type of solar chimney that has lower height and bigger diameter, and discusses its applications. The bigger diameter chimneys are introduced showing cold inflow phenomena that significantly reduced the performance of solar chimney. The cold inflow-free operation of solar chimneys restores the draft losses and enhances the performance of the solar chimneys. Numerical and experimental investigation results will be presented to highlight the performance of cold inflow-free solar chimney performance. In addition, this book covers the important basic design parameters that affect the design of solar chimney for different applications, mainly, solar chimney-assisted ventilation for passive cooling and power generation system.
Der Autor bietet erstmalig eine entmystifizierende Umdeutung der Quantenphanomene fur eine tiefere statistische Fundierung der Schroedinger-Theorie. Diese Umdeutung wirft ein neues Licht auf die Quantenwelt und bietet innovative Wege zur UEberwindung des Welle-Teilchen-Dualismus'. Der Autor erganzt aktuelle Literatur zur Quantenthermodynamik und Dekoharenz, indem er unter anderem die Dekoharenz quantenmechanischer UEberlagerungszustande thermodynamisch begrundet und die Heisenbergsche Unscharferelation auf den zweiten Hauptsatz zuruckfuhrt.
This open access book describes the theory of transformation thermotics and its extended theories for the active control of macroscopic thermal phenomena of artificial systems, which is in sharp contrast to classical thermodynamics comprising the four thermodynamic laws for the passive description of macroscopic thermal phenomena of natural systems. This monograph consists of two parts, i.e., inside and outside metamaterials, and covers the basic concepts and mathematical methods, which are necessary to understand the thermal problems extensively investigated in physics, but also in other disciplines of engineering and materials. The analyses rely on models solved by analytical techniques accompanied by computer simulations and laboratory experiments. This monograph can not only be a bridge linking three first-class disciplines, i.e., physics, thermophysics, and materials science, but also contribute to interdisciplinary development.
This is a textbook on thermodynamics of materials for junior/senior undergraduate students and first-year graduate students as well as a reference book for researchers who would like to refresh their understanding of thermodynamics. The textbook employs a plain language to explain the thermodynamic concepts and quantities. It embraces the mathematical beauty and rigor of Gibbs thermodynamics through the fundamental equation of thermodynamics from which all thermodynamic properties of a material can be derived. However, a reader with basic first-year undergraduate calculus skills will be able to get through the book without difficulty. One unique feature of this textbook is the descriptions of the step-by-step procedures for computing all the thermodynamic properties from the fundamental equation of thermodynamics and all the thermodynamic energies from a set of common, experimentally measurable thermodynamic properties, supplemented with ample numerical examples. Another unique feature of this textbook is its emphasis on the concept of chemical potential and its applications to phase equilibria in single component systems and binary solutions, chemical reaction equilibria, and lattice and electronic defects in crystals. The concept of chemical potential is introduced at the very beginning of the book together with temperature and pressure. It avoids or minimizes the use of terms such as molar Gibbs free energy, partial molar Gibbs free energy, or Gibbs potential because molar Gibbs free energy or partial molar Gibbs free energy is precisely the chemical potential of a material or a component. It is the chemical potential that determines the stability of chemical species, compounds, and phases and their tendency to chemically react to form new species, transform to new physical state, and migrate from one spatial location to another. Therefore, it is the chemical potential differences or gradients that drive essentially all materials processes of interest. A reader after finishing reading the book is expected to not only achieve a high-level fundamental understanding of thermodynamics but also acquire the analytical skills of applying thermodynamics to determining materials equilibrium and driving forces for materials processes.
This book highlights the advances and trends in the safety analysis of sodium-cooled fast reactors, especially from the perspective of particle bed-related phenomena during core disruptive accidents. A sodium-cooled fast reactor (SFR) is an optimized candidate of the next-generation nuclear reactor systems. Its safety is a critical issue during its R&D process. The book elaborates on research progresses in particle bed-related phenomena in terms of the molten-pool mobility, the molten-pool sloshing motion, the debris bed formation behavior, and the debris bed self-leveling behavior. The book serves as a good reference for researchers, professionals, and postgraduate students interested in sodium-cooled fast reactors. Knowledge provided is also useful for those who are engaging in severe accident analysis for lead-cooled fast reactors and light water reactors.
This textbook introduces thermodynamics with a modern approach, starting from four fundamental physical facts (the atomic nature of matter, the indistinguishability of atoms and molecules of the same species, the uncertainty principle, and the existence of equilibrium states) and analyzing the behavior of complex systems with the tools of information theory, in particular with Shannon's measure of information (or SMI), which can be defined on any probability distribution. SMI is defined and its properties and time evolution are illustrated, and it is shown that the entropy is a particular type of SMI, i.e. the SMI related to the phase-space distribution for a macroscopic system at equilibrium. The connection to SMI allows the reader to understand what entropy is and why isolated systems follow the Second Law of Thermodynamics. The Second Llaw is also formulated for other systems, not thermally isolated and even open with respect to the transfer of particles. All the fundamental aspects of thermodynamics are derived and illustrated with several examples in the first part of the book. The second part addresses important applications of thermodynamics, covering phase transitions, mixtures and solutions (including the Kirkwood-Buff approach and solvation thermodynamics), chemical equilibrium, and the outstanding properties of water.This textbook is unique in two aspects. First, thermodynamics is introduced with a novel approach, based on information theory applied to macroscopic systems at equilibrium. It is shown that entropy is a particular case of Shannon's measure of information (SMI), and the properties and time evolution of the SMI are used to explain the Second Law of Thermodynamics. This represents a real breakthrough, as classical thermodynamics cannot explain entropy, nor clarify why systems should obey the Second Law. Second, this textbook offers the reader the possibility to get in touch with important and advanced applications of thermodynamics, to address the topics discussed in the second part of the book. Although they may go beyond the content of a typical introductory course on thermodynamics, some of them can be important in the curriculum chosen by the student. At the same time, they are of appealing interest to more advanced scholars.
The nonequilibrium behavior of nanoscopic and biological systems, which are typically strongly fluctuating, is a major focus of current research. Lately, much progress has been made in understanding such systems from a thermodynamic perspective. However, new theoretical challenges emerge when the fluctuating system is additionally subject to time delay, e.g. due to the presence of feedback loops. This thesis advances this young and vibrant research field in several directions. The first main contribution concerns the probabilistic description of time-delayed systems; e.g. by introducing a versatile approximation scheme for nonlinear delay systems. Second, it reveals that delay can induce intriguing thermodynamic properties such as anomalous (reversed) heat flow. More generally, the thesis shows how to treat the thermodynamics of non-Markovian systems by introducing auxiliary variables. It turns out that delayed feedback is inextricably linked to nonreciprocal coupling, information flow, and to net energy input on the fluctuating level.
|
![]() ![]() You may like...
Frontiers In Entropy Across The…
M. Zuhair Nashed, Willi Freeden
Hardcover
R5,234
Discovery Miles 52 340
Computational Modeling of Intelligent…
Mostafa Baghani, Majid Baniassadi, …
Paperback
R4,077
Discovery Miles 40 770
Advances in Heat Transfer, Volume 50
Ephraim M. Sparrow, John Patrick Abraham, …
Hardcover
R4,846
Discovery Miles 48 460
Chemical Thermodynamics: Principles and…
J. Bevan Ott, Juliana Boerio-Goates
Hardcover
R3,082
Discovery Miles 30 820
Materials for Advanced Heat Transfer…
S. J. Vijay, Brusly Solomon, …
Paperback
R5,265
Discovery Miles 52 650
|