![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Thermodynamics & statistical physics > Thermodynamics
The Mechanics and Thermodynamics of Continua presents a unified treatment of continuum mechanics and thermodynamics that emphasizes the universal status of the basic balances and the entropy imbalance. These laws are viewed as fundamental building blocks on which to frame theories of material behavior. As a valuable reference source, this book presents a detailed and complete treatment of continuum mechanics and thermodynamics for graduates and advanced undergraduates in engineering, physics, and mathematics. The chapters on plasticity discuss the standard isotropic theories and, in addition, crystal plasticity and gradient plasticity.
This textbook presents the classical treatment of the problems of heat transfer in an exhaustive manner with due emphasis on understanding of the physics of the problems. This emphasis will be especially visible in the chapters on convective heat transfer. Emphasis is also laid on the solution of steady and unsteady two-dimensional heat conduction problems. Another special feature of the book is a chapter on introduction to design of heat exchangers and their illustrative design problems. A simple and understandable treatment of gaseous radiation has been presented. A special chapter on flat plate solar air heater has been incorporated that covers mathematical modeling of the air heater. The chapter on mass transfer has been written looking specifically at the needs of the students of mechanical engineering. The book includes a large number and variety of solved problems with supporting line diagrams. A number of application-based examples have been incorporated where applicable. The end-of-chapter exercise problems are supplemented with stepwise answers. Though the book has been primarily designed to serve as a complete textbook for undergraduate and graduate students of mechanical engineering, it will also be useful for students of chemical, aerospace, automobile, production, and industrial engineering streams. The book fully covers the topics of heat transfer coursework and can also be used as an excellent reference for students preparing for competitive graduate examinations.
The nonequilibrium behavior of nanoscopic and biological systems, which are typically strongly fluctuating, is a major focus of current research. Lately, much progress has been made in understanding such systems from a thermodynamic perspective. However, new theoretical challenges emerge when the fluctuating system is additionally subject to time delay, e.g. due to the presence of feedback loops. This thesis advances this young and vibrant research field in several directions. The first main contribution concerns the probabilistic description of time-delayed systems; e.g. by introducing a versatile approximation scheme for nonlinear delay systems. Second, it reveals that delay can induce intriguing thermodynamic properties such as anomalous (reversed) heat flow. More generally, the thesis shows how to treat the thermodynamics of non-Markovian systems by introducing auxiliary variables. It turns out that delayed feedback is inextricably linked to nonreciprocal coupling, information flow, and to net energy input on the fluctuating level.
Capitalism is under attack. Defenders say that capitalism has raised billions of people from poverty. But a central activity of capitalism today, Wall Street style, is speculation (gambling), using other people's money, and privatizing the profits while socializing the debts. Skeptics argue that capitalism has redistributed the wealth of the planet in favor of a very few, meanwhile leaving the planet in bad shape and leaving billions of people out in the cold. Wealth is now extremely mal-distributed, opportunity is far from equal, and upward social mobility has declined significantly in recent decades. This book reviews the evidence and arguments pro and con in considerable detail. The evidence is mixed. The main virtue of capitalism is its emphasis on competition as a driver of innovation and, thus, of economic growth. It is true that economic growth has accelerated in recent centuries, and it is true that billions of people have been lifted from poverty. But it is not necessarily true that intense "winner take all" competition in the marketplace is the explanation for growth. Neoclassical economic theory posits that self-interest is the primary motive for all economic decisions, leaving little room for cooperation and even less for altruism. The theory applies to an unrealistic "model" of human behavior, known as Homo economicus or "economic man", whose characteristic activity is buying or selling. The reason for using the adjective word "social" - as in socialism" or "social service" or "social democracy" -- is, essentially, to deny those postulates of standard economic theory. Real humans are not rational utility maximizers (whatever that is) and very often do things that are not in their own personal best interests. This can happen because other interests, such as family loyalty, professional, religious, or patriotic duty, may take precedence. Real people rarely behave like Homo economicus, who has rivals but no friends. He (or she) does not trust anyone, hence cannot cooperate with others, and can never create, or live in, a viable social system (or marriage). Yet social systems, ranging from families and tribes to firms, cities, and nations do (and must) exist or civilization cannot exist. A viable social system must not allow "winner takes all". It must reallocate some of the societal wealth being created by competitive activities to support the young, the old and the weak, because all of those people have equal rights, if not the same luck or the same skills. Both competition and cooperation have important roles to play. A hybrid capitalism involving both is the only viable solution. The book ends with a specific suggestion, namely Universal Basic Income, or UBI.
The book provides design engineers an elemental understanding of the variables that influence pressure drop and heat transfer in plain and micro-fin tubes to thermal systems using liquid single-phase flow in different industrial applications. It also provides design engineers using gas-liquid, two-phase flow in different industrial applications the necessary fundamentals of the two-phase flow variables. The author and his colleagues were the first to determine experimentally the very important relationship between inlet geometry and transition. On the basis of their results, they developed practical and easy to use correlations for the isothermal and non-isothermal friction factor (pressure drop) and heat transfer coefficient (Nusselt number) in the transition region as well as the laminar and turbulent flow regions for different inlet configurations and fin geometry. This work presented herein provides the thermal systems design engineer the necessary design tools. The author further presents a succinct review of the flow patterns, void fraction, pressure drop and non-boiling heat transfer phenomenon and recommends some of the well scrutinized modeling techniques.
This book highlights the advances and trends in the safety analysis of sodium-cooled fast reactors, especially from the perspective of particle bed-related phenomena during core disruptive accidents. A sodium-cooled fast reactor (SFR) is an optimized candidate of the next-generation nuclear reactor systems. Its safety is a critical issue during its R&D process. The book elaborates on research progresses in particle bed-related phenomena in terms of the molten-pool mobility, the molten-pool sloshing motion, the debris bed formation behavior, and the debris bed self-leveling behavior. The book serves as a good reference for researchers, professionals, and postgraduate students interested in sodium-cooled fast reactors. Knowledge provided is also useful for those who are engaging in severe accident analysis for lead-cooled fast reactors and light water reactors.
The importance of thermodynamics, particularly its Second Principle, to all branches of science in which systems with very large numbers of particles are involved cannot be overstated. This book offers a panoramic view of non-equilibrium thermodynamics. Perhaps the two most attractive aspects of thermodynamic equilibrium are its stability and its independence from the specifics of the particular system involved. Does an equivalent exist for non-equilibrium thermodynamics? Many researchers have tried to describe such stability in the same way that the Second Principle describes the stability of thermodynamic equilibrium - and failed. Most of them invoked either entropy, or its production rate, or some modified version of it. In their efforts, however, those researchers have found a lot of useful stability criteria for far-from-equilibrium states. These criteria usually take the form of variational principles, in terms of the minimization or maximization of some quantity. The aim of this book is to discuss these variational principles by highlighting the role of macroscopic quantities. This book is aimed at a wider audience than those most often exposed to the criteria described, i.e., undergraduates in STEM, as well as the usual interested and invested professionals.
French mathematician Joseph Fourier's Th orie Analytique de la Chaleur was originally published in 1822. In this groundbreaking study, arguing that previous theories of mechanics advanced by such outstanding scientists as Archimedes, Galileo, Newton and their successors did not explain the laws of heat, Fourier set out to study the mathematical laws governing heat diffusion and proposed that an infinite mathematical series may be used to analyse the conduction of heat in solids: this is now known as the 'Fourier Series'. His work paved the way for modern mathematical physics. This book will be especially useful for mathematicians who are interested in trigonometric series and their applications, and it is reissued simultaneously with Alexander Freeman's English translation, The Analytical Theory of Heat, of 1878.
Indisputably, this is a modern classic of science. Based on a
course of lectures delivered by the author at Columbia University,
the text is elementary in treatment and remarkable for its clarity
and organization. Although it is assumed that the reader is
familiar with the fundamental facts of thermometry and calorimetry,
no advanced mathematics beyond calculus is assumed.
These three lectures cover a certain aspect of complexity and black holes, namely the relation to the second law of thermodynamics. The first lecture describes the meaning of quantum complexity, the analogy between entropy and complexity, and the second law of complexity. Lecture two reviews the connection between the second law of complexity and the interior of black holes. Prof. L. Susskind discusses how firewalls are related to periods of non-increasing complexity which typically only occur after an exponentially long time. The final lecture is about the thermodynamics of complexity, and "uncomplexity" as a resource for doing computational work. The author explains the remarkable power of "one clean qubit," in both computational terms and in space-time terms. This book is intended for graduate students and researchers who want to take the first steps towards the mysteries of black holes and their complexity.
This book provides a didactic derivation of the main theories of thermotropic and lyotropic liquid crystals, revealing the common molecular-theoretic framework that underpins both theories. This unified context will help young researchers in coming to grips with the basics of the simplest of liquid crystals, being uniaxial nematic liquid crystals, easing them into the intricacies of more complex forms of such materials irrespective of whether they are thermotropic or lyotropic. The coverage provides a theoretical understanding of the phase behaviour, that is, what drives molecules and particles to spontaneously align themselves, as well as an appreciation of the role of entropy, energy and so on. The focus here is on the main theories for the isotropic-nematic transition, being the Maier-Saupe and the Onsager theories, and how they are derived from a common description, known as (classical) density functional theory (DFT). This book will be a valuable resource for senior undergraduate and graduate students, and experimentalists and engineers who feel intimidated by more formal or rigorous theoretical accounts and textbooks. Exercises at the end of each chapter help the reader to apply the basic concepts also to other types of liquid crystal, in particular the smectic liquid crystal.
From molecular motors to bacteria, from crawling cells to large animals, active entities are found at all scales in the biological world. Active matter encompasses systems whose individual constituents irreversibly dissipate energy to exert self-propelling forces on their environment. Over the past twenty years, scientists have managed to engineer synthetic active particles in the lab, paving the way towards smart active materials. This book gathers a pedagogical set of lecture notes that cover topics in nonequilibrium statistical mechanics and active matter. These lecture notes stem from the first summer school on Active Matter delivered at the Les Houches school of Physics. The lectures covered four main research directions: collective behaviours in active-matter systems, passive and active colloidal systems, biophysics and active matter, and nonequilibrium statistical physics-from passive to active.
Concise, detailed, and transparently structured, this upper-level undergraduate textbook is an excellent resource for a one-semester course on thermodynamics for students majoring in physics, chemistry, or materials science. Throughout the seven chapters and three-part appendix, students benefit from numerous practical examples and solved problems ranging in broad scope from cosmic to molecular evolution; cloud formation to rubber elasticity; and Carnot engines to Monte Carlo simulation of phase equilibria. Lauded in Physics Today as "a valuable resource for students and faculty", Hentschke's Thermodynamics presents in this long-anticipated second edition new and extended coverage of a range of topical material, such as thermodynamics of the universe and atmospheric thermodynamics, while also featuring a more application-oriented treatment of surfaces, interfaces, and polymers. Touching on subjects throughout soft-matter physics, superconductors, and complex fluids, this textbook delivers the foundation and breadth of scope necessary to prepare undergraduate students for further study in this timeless yet ever-changing field.
This textbook introduces the molecular side of physical chemistry. It offers students and practitioners a new approach to the subject by presenting numerous applications and solved problems that illustrate the concepts introduced for varied and complex technical situations. The book offers a balance between theory, tools, and practical applications. The text aims to be a practical manual for solving engineering problems in industries where processes depend on the chemical composition and physical properties of matter. The book is organized into three main topics: (I) the molecular structure of matter, (II) molecular models in thermodynamics, and (III) transport phenomena and mechanisms. Part I presents methods of analysis of the molecular behavior in a given system, while the following parts use these methods to study the equilibrium states of a material system and to analyze the processes that can take place when the system is in a state of non-equilibrium, in particular the transport phenomena. Molecular Physical Chemistry for Engineering Applications is designed for upper-level undergraduate and graduate courses in physical chemistry for engineers, applied physical chemistry, transport phenomena, colloidal chemistry, and transport/transfer processes. The book will also be a valuable reference guide for engineers, technicians, and scientists working in industry. Offers modeling techniques and tools for solving exercises and practical cases; Provides solutions and conclusions so students can follow results more closely; Step-by-step problem solving enables students to understand how to approach complex issues.
This book presents the optimal auxiliary functions method and applies it to various engineering problems and in particular in boundary layer problems. The cornerstone of the presented procedure is the concept of "optimal auxiliary functions" which are needed to obtain accurate results in an efficient way. Unlike other known analytic approaches, this procedure provides us with a simple but rigorous way to control and adjust the convergence of the solutions of nonlinear dynamical systems. The optimal auxiliary functions are depending on some convergence-control parameters whose optimal values are rigorously determined from mathematical point of view. The capital strength of our procedure is its fast convergence, since after only one iteration, we obtain very accurate analytical solutions which are very easy to be verified. Moreover, no simplifying hypothesis or assumptions are made. The book contains a large amount of practical models from various fields of engineering such as classical and fluid mechanics, thermodynamics, nonlinear oscillations, electrical machines, and many more. The book is a continuation of our previous books "Nonlinear Dynamical Systems in Engineering. Some Approximate Approaches", Springer-2011 and "The Optimal Homotopy Asymptotic Method. Engineering Applications", Springer-2015.
This monograph focuses on the science of combustion, exploring its technological, social, and philosophical aspects. Presented here is a systematic overview of the field, with up-to-date treatments of topics of central importance: diffusion flames, deflagrations, detonations, flammability, and explosions. Special emphasis is given to turbulent combustion so that the many different approaches to this multifaceted subject can be exposed and categorized in a systematic manner. The author offers his projections for future developments, including identification of outstanding research areas. This book is a concise and penetrating overview of the field of combustion history and research, and will be of interest to motivated non-specialists interested in more than a facile exploration of the subject.
This book highlights the design of a new type of solar chimney that has lower height and bigger diameter, and discusses its applications. The bigger diameter chimneys are introduced showing cold inflow phenomena that significantly reduced the performance of solar chimney. The cold inflow-free operation of solar chimneys restores the draft losses and enhances the performance of the solar chimneys. Numerical and experimental investigation results will be presented to highlight the performance of cold inflow-free solar chimney performance. In addition, this book covers the important basic design parameters that affect the design of solar chimney for different applications, mainly, solar chimney-assisted ventilation for passive cooling and power generation system.
This book covers aspects of multiphase flow and heat transfer during phase change processes, focusing on boiling and condensation in microscale channels. The authors present up-to-date predictive methods for flow pattern, void fraction, pressure drop, heat transfer coefficient and critical heat flux, pointing out the range of operational conditions that each method is valid. The first four chapters are dedicated on the motivation to study multiphase flow and heat transfer during phase change process, and the three last chapters are focused on the analysis of heat transfer process during boiling and condensation. During the description of the models and predictive methods, the trends are discussed and compared with experimental findings.
Rational extended thermodynamics (RET) is the theory that is applicable to nonequilibrium phenomena out of local equilibrium. It is expressed by the hyperbolic system of field equations with local constitutive equations and is strictly related to the kinetic theory with the closure method of the hierarchies of moment equations. The book intends to present, in a systematic way, new results obtained by RET of gases in both classical and relativistic cases, and it is a natural continuation of the book "Rational Extended Thermodynamics beyond the Monatomic Gas" by the same authors published in 2015. However, this book addresses much wider topics than those of the previous book. Its contents are as follows: RET of rarefied monatomic gases and of polyatomic gases; a simplified RET theory with 6 fields being valid far from equilibrium; RET where both molecular rotational and vibrational modes exist; mixture of gases with multi-temperature. The theory is applied to several typical topics (sound waves, shock waves, etc.) and is compared with experimental data. From a mathematical point of view, RET can be regarded as a theory of hyperbolic symmetric systems, of which it is possible to conduct a qualitative analysis. The book represents a valuable resource for applied mathematicians, physicists, and engineers, offering powerful models for many potential applications such as reentering satellites into the atmosphere, semiconductors, and nanoscale phenomena.
This introductory textbook for standard undergraduate courses in thermodynamics has been completely rewritten to explore a greater number of topics, more clearly and concisely. Starting with an overview of important quantum behaviours, the book teaches students how to calculate probabilities in order to provide a firm foundation for later chapters. It introduces the ideas of classical thermodynamics and explores them both in general and as they are applied to specific processes and interactions. The remainder of the book deals with statistical mechanics. Each topic ends with a boxed summary of ideas and results, and every chapter contains numerous homework problems, covering a broad range of difficulties. Answers are given to odd-numbered problems, and solutions to even-numbered problems are available to instructors at www.cambridge.org/9781107694927.
The theory of thermodynamics has been one of the bedrocks of 19th-century physics, and thermodynamic problems have inspired Planck's quantum hypothesis. One hundred years later, in an era where we design increasingly sophisticated nanotechnologies, researchers in quantum physics have been 'returning to their roots', attempting to reconcile modern nanoscale devices with the theory of thermodynamics. This textbook explains how it is possible to unify the two opposite pictures of microscopic quantum physics and macroscopic thermodynamics in one consistent framework, proving that the ancient theory of thermodynamics still offers many remarkable insights into present-day problems. This textbook focuses on the microscopic derivation and understanding of key principles and concepts and their interrelation. The topics covered in this book include (quantum) stochastic processes, (quantum) master equations, local detailed balance, classical stochastic thermodynamics, (quantum) fluctuation theorems, strong coupling and non-Markovian effects, thermodynamic uncertainty relations, operational approaches, Maxwell's demon, and time-reversal symmetry, among other topics. The textbook also explores several practical applications of the theory in more detail, including single-molecule pulling experiments, quantum transport and thermoelectric effects in quantum dots, the micromaser, and related setups in quantum optics. The aim of this book is to inspire readers to investigate a plethora of modern nanoscale devices from a thermodynamic point of view, allowing them to address their dissipation, efficiency, reliability, and power based on a conceptually clear understanding about the microscopic origin of heat, entropy, and the second law. The book is accessible to graduate students, post-docs, and lecturers, but will also be of interest to all researchers striving for a deeper understanding of the laws of thermodynamics beyond their traditional realm of applicability.
This book is a concise, readable, yet authoritative primer of basic classic thermodynamics. Many students have difficulty with thermodynamics, and find at some stage of their careers in academia or industry that they have forgotten what they learned, or never really understood these fundamental physical laws. As the title of the book suggests, the author has distilled the subject down to its essentials, using many simple and clear illustrations, instructive examples, and key equations and simple derivations to elucidate concepts. Based on many years of teaching experience at the undergraduate and graduate levels, "Essential Classical Thermodynamics" is intended to provide a positive learning experience, and to empower the reader to explore the many possibilities for applying thermodynamics in other fields of science, engineering, and even economics where energy plays a central role. Thermodynamics is fun when you understand it!
This textbook facilitates students' ability to apply fundamental principles and concepts in classical thermodynamics to solve challenging problems relevant to industry and everyday life. It also introduces the reader to the fundamentals of statistical mechanics, including understanding how the microscopic properties of atoms and molecules, and their associated intermolecular interactions, can be accounted for to calculate various average properties of macroscopic systems. The author emphasizes application of the fundamental principles outlined above to the calculation of a variety of thermodynamic properties, to the estimation of conversion efficiencies for work production by heat interactions, and to the solution of practical thermodynamic problems related to the behavior of non-ideal pure fluids and fluid mixtures, including phase equilibria and chemical reaction equilibria. The book contains detailed solutions to many challenging sample problems in classical thermodynamics and statistical mechanics that will help the reader crystallize the material taught. Class-tested and perfected over 30 years of use by nine-time Best Teaching Award recipient Professor Daniel Blankschtein of the Department of Chemical Engineering at MIT, the book is ideal for students of Chemical and Mechanical Engineering, Chemistry, and Materials Science, who will benefit greatly from in-depth discussions and pedagogical explanations of key concepts. Distills critical concepts, methods, and applications from leading full-length textbooks, along with the author's own deep understanding of the material taught, into a concise yet rigorous graduate and advanced undergraduate text; Enriches the standard curriculum with succinct, problem-based learning strategies derived from the content of 50 lectures given over the years in the Department of Chemical Engineering at MIT; Reinforces concepts covered with detailed solutions to illuminating and challenging homework problems.
"an impressive text that addresses a glaring gap in the teaching of physical chemistry, being specifically focused on biologically-relevant systems along with a practical focus.... the ample problems and tutorials throughout are much appreciated." -Tobin R. Sosnick, Professor and Chair of Biochemistry and Molecular Biology, University of Chicago "Presents both the concepts and equations associated with statistical thermodynamics in a unique way that is at visual, intuitive, and rigorous. This approach will greatly benefit students at all levels." -Vijay S. Pande, Henry Dreyfus Professor of Chemistry, Stanford University "a masterful tour de force.... Barrick's rigor and scholarship come through in every chapter." -Rohit V. Pappu, Edwin H. Murty Professor of Engineering, Washington University in St. Louis This book provides a comprehensive, contemporary introduction to developing a quantitative understanding of how biological macromolecules behave using classical and statistical thermodynamics. The author focuses on practical skills needed to apply the underlying equations in real life examples. The text develops mechanistic models, showing how they connect to thermodynamic observables, presenting simulations of thermodynamic behavior, and analyzing experimental data. The reader is presented with plenty of exercises and problems to facilitate hands-on learning through mathematical simulation. Douglas E. Barrick is a professor in the Department of Biophysics at Johns Hopkins University. He earned his Ph.D. in biochemistry from Stanford University, and a Ph.D. in biophysics and structural biology from the University of Oregon.
This book focuses on mixed crystals formed by molecular substances. The emphasis lies on the elucidation of the structural and thermodynamic properties of two-component systems. Thanks to the fact that the research efforts have been directed to a number of families of chemically coherent substances, rather than to a collection of isolated systems, the knowledge of mixed crystals has substantially increased. This is reflected by the discovery of several empirical relationships between thermodynamic properties, crystallographic properties, and also between thermodynamic mixing properties and exothermodynamic parameters, such as the structural mismatch between the components of the binary systems. This book is a benchmark for material scientists and a unique starting point for anyone interested in mixed crystals. |
You may like...
Thermal Management of Electronics…
Rajesh Baby, C. Balaji
Paperback
Thermochemical Conversion Processes for…
Falah Alobaid, Jochen Stroehle
Hardcover
Chemical Thermodynamics: Principles and…
J. Bevan Ott, Juliana Boerio-Goates
Hardcover
R2,979
Discovery Miles 29 790
Nanofluids for Heat and Mass Transfer…
Bharat Bhanvase, Divya Barai
Paperback
R3,947
Discovery Miles 39 470
Nonequilibrium Thermodynamics…
Yasar Demirel, Vincent Gerbaud
Paperback
Advances in Heat Transfer, Volume 50
Ephraim M. Sparrow, John Patrick Abraham, …
Hardcover
R4,671
Discovery Miles 46 710
|