![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Thermodynamics & statistical physics > Thermodynamics
Nucleation is the initial step of every first-order phase transition, and most phase transitions encountered both in everyday life and industrial processes are of the first-order. Using an elegant classical theory based on thermodynamics and kinetics, this book provides a fully detailed picture of multi-component nucleation. As many of the issues concerning multi-component nucleation theory have been solved during the last 10-15 years, it also thoroughly integrates both fundamental theory with recent advances presented in the literature. Classical Nucleation Theory in Multicomponent Systems serves as a textbook for advanced thermodynamics courses, as well as an important reference for researchers in the field. The main topics covered are: the basic relevant thermodynamics and statistical physics; modelling a molecular cluster as a spherical liquid droplet; predicting the size and composition of the nucleating critical clusters; kinetic models for cluster growth and decay; calculating nucleation rates; and a full derivation and application of nucleation theorems that can be used to extract microscopic cluster properties from nucleation rate measurements. The assumptions and approximations needed to build the classical theory are described in detail, and the reasons why the theory fails in certain cases are explained. Relevant problems are presented at the end of each chapter.
Dieses in sich abgeschlossene Lehrbuch enthalt eine moderne und ausfuhrliche Darstellung der Grundlagen der phanomenologischen Thermodynamik. Der Schwerpunkt liegt auf der grossen Zahl aktueller Beispiele und Anwendungen aus allen Bereichen der Naturwissenschaften wie Chemie, Physik, chemische Verfahrenstechnik, Biologie, nachhaltige Energietechnik, Geophysik, Astrophysik, Umweltchemie, Medizin und nicht zuletzt dem Alltagsleben. Dadurch wird es in besonderer Weise der wachsenden Bedeutung der Thermodynamik als Querschnittswissenschaft gerecht. Das Buch ist geeignet zum Selbststudium, zum Nachschlagen wie auch zum Gebrauch in Grund- und Spezialvorlesungen aller naturwissenschaftlichen Studienfacher.
This is the first book of a series aiming at setting the basics for energy engineering. This book presents the fundamentals of heat and mass transfer with a step-by-step approach, based on material and energy balances. While the topic of heat and mass transfer is an old subject, the way the book introduces the concepts, linking them strongly to the real world and to the present concerns, is particular. The scope of the different developments keeps in mind a practical energy engineering view.
From molecular motors to bacteria, from crawling cells to large animals, active entities are found at all scales in the biological world. Active matter encompasses systems whose individual constituents irreversibly dissipate energy to exert self-propelling forces on their environment. Over the past twenty years, scientists have managed to engineer synthetic active particles in the lab, paving the way towards smart active materials. This book gathers a pedagogical set of lecture notes that cover topics in nonequilibrium statistical mechanics and active matter. These lecture notes stem from the first summer school on Active Matter delivered at the Les Houches school of Physics. The lectures covered four main research directions: collective behaviours in active-matter systems, passive and active colloidal systems, biophysics and active matter, and nonequilibrium statistical physics-from passive to active.
This practical introduction to the analysis of data collected from reliability studies offers clear, detailed explanations of the best and most up-to-date techniques available. Topics include survival analysis with covariates, the assessment of systems performance, reliability growth models, dependency (which encompasses both engineering and statistical approaches), and practical aspects of analysis. A wealth of interesting case studies appear throughout the text, lending "real-world" examples to the more theoretical discussions. Throughout, the authors stress the need for investigators to understand the background and nature of their data if they are to select the most appropriate analysis method. They also provide in-depth treatments of the mathematical and statistical bases underlying each technique. Accessible and comprehensive, the book will be welcomed by students, professionals, and statisticians who are interested in the practical aspects of reliability data analysis.
There are many thermodynamics introductory texts on the market, yet most provide a presentation that is at a level to high for those new to the field This second edition of Thermodynamics continues to provide an accessible introduction to thermodynamics, which maintains an appropriate rigor to prepare newcomers for subsequent, more advanced topics. The book presents a logical methodology for solving problems in the context of conservation laws and property labels. The author elucidates the terms around which thermodynamics has historically developed such as work, temperature, entropy, and energy. Using a pedagogical approach that builds from basic principles to laws and eventually corollaries of the law, the text will enable students to think in clear and correct thermodynamic terms as well as solve real engineering problems. For those just beginning their studies in the field, Thermodynamics, Second Edition provides the core fundamentals in a rigorous, accurate, and accessible presentation.
This book treats atmospheric convection from different angles including the theoretical aspects of atmospheric deep convection and the weather phenomena related to convection. The problem of boundary conditions that result in severe convective weather patterns is explored within the framework of worldwide climatology. The book bridges the gap between theory and its operational application both within the fields of weather forecasting and that of risk management.
The present volume in the New Series of Landolt-B rnstein provides critically evaluated data on phase diagrams, crystallographic and thermodynamic data of ternary alloy systems. The often conflicting literature data have been critically evaluated by Materials Science International Team, MSIT, a team working together for many years, and with expertise in a broad range of methods, materials and applications.
The present volume in the New Series of Landolt-B rnstein provides critically evaluated data on phase diagrams, crystallographic and thermodynamic data of ternary alloy systems. The often conflicting literature data have been critically evaluated by Materials Science International Team, MSIT, a team working together for many years, and with expertise in a broad range of methods, materials and applications.
The present volume in the New Series of Landolt-Bornstein provides critically evaluated data on phase diagrams, crystallographic and thermodynamic data of ternary alloy systems. Reliable phase diagrams provide materials scientists and engineers with basic information important for fundamental research, development and optimization of materials. The often conflicting literature data have been critically evaluated by Materials Science International Team, MSIT(r), a team working together since many years, and with expertise in a broad range of methods, materials and applications. All evaluation reports published here have undergone a thorough review process in which the reviewers had access to all the original data. The data for each ternary system are provided in a standard format which includes text, tables and diagrams. The topics presented are literature data, binary systems, solid phases, pseudobinary systems, invariant equilibria, liquidus, solidus, and solvus surfaces, isothermal sections, temperature-composition sections, thermodynamics, materials properties and applications, and miscellanea. Finally, a detailed bibliography of all cited references is provided. In the present volume IV/11C selected non-ferrous-metal systems are considered, especially selected nuclear materials and engineering systems in this Part
The present volume in the New Series of Landolt-B rnstein provides critically evaluated data on phase diagrams, and crystallographic and thermodynamic data of ternary alloy systems. The data for each ternary system are provided in a standard format with text, tables and diagrams. The volume is a standard reference book with selected and easily retrievable data from the fields of physics and chemistry collected by acknowledged international scientists.
The well known transport laws of Navier-Stokes and Fourier fail for the simulation of processes on lengthscales in the order of the mean free path of a particle that is when the Knudsen number is not small enough. Thus, the proper simulation of flows in rarefied gases requires a more detailed description. This book discusses classical and modern methods to derive macroscopic transport equations for rarefied gases from the Boltzmann equation, for small and moderate Knudsen numbers, i.e. at and above the Navier-Stokes-Fourier level. The main methods discussed are the classical Chapman-Enskog and Grad approaches, as well as the new order of magnitude method, which avoids the short-comings of the classical methods, but retains their benefits. The relations between the various methods are carefully examined, and the resulting equations are compared and tested for a variety of standard problems. The book develops the topic starting from the basic description of an ideal gas, over the derivation of the Boltzmann equation, towards the various methods for deriving macroscopic transport equations, and the test problems which include stability of the equations, shock waves, and Couette flow.
Numerous fundamental properties of quantum information measurement are developed, including the von Neumann entropy of a statistical operator and its limiting normalized version, the entropy rate. Use of quantum-entropy quantities is made in perturbation theory, central limit theorems, thermodynamics of spin systems, entropic uncertainty relations, and optical communication. This new softcover corrected reprint contains summaries of recent developments added to the ends of the chapters.
Studies of surfaces and interactions between dissimilar materials or phases are vital for modern technological applications. Computer simulation methods are indispensable in such studies and this book contains a substantial body of knowledge about simulation methods as well as the theoretical background for performing computer experiments and analyzing the data. The book is self-contained, covering a range of topics from classical statistical mechanics to a variety of simulation techniques, including molecular dynamics, Langevin dynamics and Monte Carlo methods. A number of physical systems are considered, including fluids, magnets, polymers, granular media, and driven diffusive systems. The computer simulation methods considered include both standard and accelerated versions. The simulation methods are clearly related to the fundamental principles of thermodynamics and statistical mechanics.
Entropy and entropy generation play essential roles in our understanding of many diverse phenomena ranging from cosmology to biology. Their importance is manifest in areas of immediate practical interest such as the provision of global energy as well as in others of a more fundamental flavour such as the source of order and complexity in nature. They also form the basis of most modern formulations of both equilibrium and nonequilibrium thermodynamics. Today much progress is being made in our understanding of entropy and entropy generation in both fundamental aspects and application to concrete problems. The purpose of this volume is to present some of these recent and important results in a manner that not only appeals to the entropy specialist but also makes them accessible to the nonspecialist looking for an overview of the field. This book contains fourteen contributions by leading scientists in their fields. The content covers such topics as quantum thermodynamics, nonlinear processes, gravitational and irreversible thermodynamics, the thermodynamics of Taylor dispersion, higher order transport, the mesoscopic theory of liquid crystals, simulated annealing, information and biological aspects, global energy, photovoltaics, heat and mass transport and nonlinear electrochemical systems. Audience: This work will be of value to physicists, chemists, biologists and engineers interested in the theory and applications of entropy and its generation.
The problem of deriving irreversible thermodynamics from the re versible microscopic dynamics has been on the agenda of theoreti cal physics for a century and has produced more papers than can be digested by any single scientist. Why add to this too long list with yet another work? The goal is definitely not to give a gen eral review of previous work in this field. My ambition is rather to present an approach differing in some key aspects from the stan dard treatments, and to develop it as far as possible using rather simple mathematical tools (mainly inequalities of various kinds). However, in the course of this work I have used a large number of results and ideas from the existing literature, and the reference list contains contributions from many different lines of research. As a consequence the reader may find the arguments a bit difficult to follow without some previous exposure to this set of problems."
- It provides a rigorous mathematical and physical basis to techniques that are often introduced on empirical basis - While the book covers a broad range of techniques, it starts at a basic theoretical level. This gives the book a strong foundation and makes it accessible to students from various backgrounds. - Has a computational focus unlike many competing titles
The series of texts Classical Theoretical Physics is based on the highly successful series of courses given by Walter Greiner and his colleagues at the Johann Wolfgang Goethe University in Frankfurt am Main, Germany. Intended for advanced undergraduates and beginning graduate students, the volumes in this series will provide not only a complete survey of classical theoretical physics but also an enormous number of worked examples and problems to show students clearly how to apply the underlying principles to realistic problems. Thermodynamics and Statistical Physics covers: Thermodynamics - basic definitions of thermodynamics, equilibrium, state variables - the first and second laws - phase transitions and chemical reactions - thermodynamic potentials Statistical Mechanics - statistics of microscopic states and connection to the entropy - the microcanonical, canonical and grand canonical ensembles - applications of Boltzmann statistics Quantum Statistics - the density operator - many-particle wave functions - ideal quantum systems - the ideal Bose gas and applications to blackbody radiation, Kirchhoff's law, and lattice vibrations - the ideal Fermi gas and applications to condensed-matter physics, astrophysics, and nuclear physics - relativistic Bose and Fermi gases and applications to particle physics Real Gases and Phase Transitions - real gases and the virial expansion - classification of phase transitions and critical indices - the Ising and Heisenberg models
Understanding the structural and thermodynamic properties of surfaces, interfaces, and membranes is important for both fundamental and practical reasons. Important applications include coatings, dispersants, encapsulating agents, and biological materials. Soft materials, important in the development of new materials and the basis of many biological systems, cannot be designed using trial and error methods due to the multiplicity of components and parameters. While these systems can sometimes be analyzed in terms of microscopic mixtures, it is often conceptually simpler to regard them as dispersions and to focus on the properties of the internal interfaces found in these systems. The basic physics centers on the properties of quasi-two-dimensional systems embedded in the three-dimensional world, thus exhibiting phenomena that do not exist in bulk materials. This approach is the basis behind the theoretical presentation of Statistical Thermodynamics of Surfaces, Interfaces, and Membranes. The approach adapted allows one to treat the rich diversity of phenomena investigated in the field of soft matter physics (including both colloid/interface science as well as the materials and macromolecular aspects of biological physics) such as interfacial tension, the roughening transition, wetting, interactions between surfaces, membrane elasticity, and self-assembly. Presented as a set of lecture notes, this book is aimed at physicists, physical chemists, biological physicists, chemical engineers, and materials scientists who are interested in the statistical mechanics that underlie the macroscopic, thermodynamic properties of surfaces, interfaces, and membranes. This paperback edition contains all the material published in the original hard-cover edition as well as additional clarifications and explanations.
Unlike the traditional approach to thermodynamics, this book begins with a brief exposition of hydrodynamics. At this stage, the development is limited to potential flows, because, until recently, that is all that could be done, but also for didactic reasons. However, the reader will find that the situation has changed radically with the discovery of Conservative Hydrodynamics.At the core of thermodynamics is the Gibbsean minimum energy principle. In this book, it is generalized to include the hydrodynamical degrees of freedom; that is, localized as a field theory of density, pressure, temperature and entropy. The theory is referred to as local thermodynamics, as opposed to traditional, global thermodynamics where the main foundation is the variational principle of Gibbs, with a modification recommended by Prigogine.This book exists because there is (or was) no satisfactory theory of the dynamical metric interacting with extended distributions of matter. It will be shown that any theory of interacting fields that includes the Einsteinian metric must be based on an action principle.This allows us, for the first time, to use 'energy' as a precise concept in vortex dynamics. Sample applications include rotating planets, Couette flow, stresses in fluids (inside the meniscus, negative pressures), immiscible fluids, amongst others.
Ideal for one- or two-semester courses that assume elementary knowledge of calculus This text presents the fundamental concepts of thermodynamics and applies these to problems dealing with properties of materials, phase transformations, chemical reactions, solutions and surfaces.utilizing principles of statistical mechanics to illustrate key concepts from a microscopic perspective, as well as develop equations of kinetic theory. Discusses the second law of thermodynamics-considering entropy as the indicator of energy quality. Principles of Thermodynamics provides end-of-chapter question and problem sets, some using MathcadT and MathematicaT a useful glossary containing important symbols, definitions, and units appendices covering multivariable calculus and valuable numerical methods and examines the basic ideas of energy, entropy, and free energy chemical reactions neutral and ionic solutions and electrochemical systems phase diagrams for binary and ternary systems surface effects in single component and multicomponent systems the thermodynamics of steady-state systems polymers and nonequilibrium systems Principles of Thermodynamics is an authoritative text suitable for upper-level undergraduate and graduate students in chemistry, physics, geosciences, and engineering.
Recent years have witnessed a resurgence in the kinetic approach to dynamic many-body problems. Modern kinetic theory offers a unifying theoretical framework within which a great variety of seemingly unrelated systems can be explored in a coherent way. Kinetic methods are currently being applied in such areas as the dynamics of colloidal suspensions, granular material flow, electron transport in mesoscopic systems, the calculation of Lyapunov exponents and other properties of classical many-body systems characterised by chaotic behaviour. The present work focuses on Brownian motion, dynamical systems, granular flows, and quantum kinetic theory.
The NATO Advanced Study Institute on Diffuse Waves in Complex Media was held at the "Centre de Physique des Houches" in France from March 17 to 27, 1998. The Schools' scientific content, wave propagation in heterogeneous me dia, has covered many areas of fundamental and applied research. On the one hand, the understanding of wave propagation has considerably improved during the last thirty years. New developments and concepts such as, speckle correlations, weak and strong localization, time reversal, near-field propagation are under active research. On the other hand, wave propagation in random media is now being investigated in many different fields such as applied mathematics, acoustics, optics, atomic physics, geo physics or medical sciences. Each community often uses its own langage to describe the same phenomena. The aim of the School was to gather worldwide specialists to illuminate various aspects of wave propagation in random media. This volume presents fourteen expository articles corresponding to courses and seminars given during the School. They are arranged as follows. The first three articles deal with the phenomena of localization of waves: B. van Tiggelen (p. 1) gives a critical review of the physics of localization, J. Lacroix (p. 61) presents the mathematical theory and A. Klein (p. 73) describes recent results for randomized periodic media."
This volume contains the texts of the four series of lectures presented by B.Cockburn, C.Johnson, C.W. Shu and E.Tadmor at a C.I.M.E. Summer School. It is aimed at providing a comprehensive and up-to-date presentation of numerical methods which are nowadays used to solve nonlinear partial differential equations of hyperbolic type, developing shock discontinuities. The most effective methodologies in the framework of finite elements, finite differences, finite volumes spectral methods and kinetic methods, are addressed, in particular high-order shock capturing techniques, discontinuous Galerkin methods, adaptive techniques based upon a-posteriori error analysis.
This book contributes to the mathematical theory of systems of differential equations consisting of the partial differential equations resulting from conservation of mass and momentum, and of constitutive equations with internal variables. The investigations are guided by the objective of proving existence and uniqueness, and are based on the idea of transforming the internal variables and the constitutive equations. A larger number of constitutive equations from the engineering sciences are presented. The book is therefore suitable not only for specialists, but also for mathematicians seeking for an introduction in the field, and for engineers with a sound mathematical background. |
![]() ![]() You may like...
Materials for Advanced Heat Transfer…
S. J. Vijay, Brusly Solomon, …
Paperback
R5,265
Discovery Miles 52 650
Frontiers In Entropy Across The…
M. Zuhair Nashed, Willi Freeden
Hardcover
R5,234
Discovery Miles 52 340
Advances in Heat Transfer, Volume 50
Ephraim M. Sparrow, John Patrick Abraham, …
Hardcover
R4,846
Discovery Miles 48 460
Computational Modeling of Intelligent…
Mostafa Baghani, Majid Baniassadi, …
Paperback
R4,077
Discovery Miles 40 770
Chemical Thermodynamics: Principles and…
J. Bevan Ott, Juliana Boerio-Goates
Hardcover
R3,082
Discovery Miles 30 820
|