![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Thermodynamics & statistical physics > Thermodynamics
Although nearly three years have elapsed since the publication of this work in Hungarian, it was decided to publish the English edition in the same form as the original, apart from some minor modifications. Since, recent research has been directed to the development of an exact theory of non-linear irreversible processes; we suggest to readers interested in similar tasks - such as the continuation of this boo- that they should study some new publications: "On the most general form of the Thermodynamic Integral Principle," Z. phys. Chem. 239 (1968) 133, and particularly: "On the Governing Principle of Dissi pative Processes," Ann. Phys. 7 (1969) 23. I have to thank my wife and Mr. W.F.HEINZ for the translation of the very concise Hungarian text. I also wish to express my gratitude to Dr. L.KARADI and Mr. Gy. VINCZE for reading the typescript with such care and to Mrs. A. R6sZLER, who typed the manuscript with great patience. I am deeply indebted to Professor ISTVAN SZABO for making this edition available so quickly and for including my work in the "En gineering Science Library." Finally, I would like to express my thanks to Springer-Verlag for the excellent edition and to the editorial staff for their readiness to meet my wishes."
Applied Chemical Engineering Thermodynamics provides the undergraduate and graduate student of chemical engineering with the basic knowledge, the methodology and the references he needs to apply it in industrial practice. Thus, in addition to the classical topics of the laws of thermodynamics, pure component and mixture thermodynamic properties as well as phase and chemical equilibria the reader will find: - history of thermodynamics - energy conservation - internmolecular forces and molecular thermodynamics - cubic equations of state - statistical mechanics. A great number of calculated problems with solutions and an appendix with numerous tables of numbers of practical importance are extremely helpful for applied calculations. The computer programs on the included disk help the student to become familiar with the typical methods used in industry for volumetric and vapor-liquid equilibria calculations.
The first comprehensive graduate-level introduction to stochastic thermodynamics Stochastic thermodynamics is a well-defined subfield of statistical physics that aims to interpret thermodynamic concepts for systems ranging in size from a few to hundreds of nanometers, the behavior of which is inherently random due to thermal fluctuations. This growing field therefore describes the nonequilibrium dynamics of small systems, such as artificial nanodevices and biological molecular machines, which are of increasing scientific and technological relevance. This textbook provides an up-to-date pedagogical introduction to stochastic thermodynamics, guiding readers from basic concepts in statistical physics, probability theory, and thermodynamics to the most recent developments in the field. Gradually building up to more advanced material, the authors consistently prioritize simplicity and clarity over exhaustiveness and focus on the development of readers' physical insight over mathematical formalism. This approach allows the reader to grow as the book proceeds, helping interested young scientists to enter the field with less effort and to contribute to its ongoing vibrant development. Chapters provide exercises to complement and reinforce learning. Appropriate for graduate students in physics and biophysics, as well as researchers, Stochastic Thermodynamics serves as an excellent initiation to this rapidly evolving field. Emphasizes a pedagogical approach to the subject Highlights connections with the thermodynamics of information Pays special attention to molecular biophysics applications Privileges physical intuition over mathematical formalism Solutions manual available on request for instructors adopting the book in a course
Stochastic Dynamics, born almost 100 years ago with the early explanations of Brownian motion by physicists, is nowadays a quickly expanding field of research within nonequilibrium statistical physics. The present volume provides a survey on the influence of fluctuations in nonlinear dynamics. It addresses specialists, although the intention of this book is to provide teachers and students with a reliable resource for seminar work. In particular, the reader will find many examples illustrating the theory as well as a host of recent findings.
This book contains the edited proceedings of the 2nd Internat- ional Conference on Computationa1 Methods and Experimental Meas- urements held on board the QE2 liner from 27th June to 2nd Ju1y 1984. The meeting was sponsored by the International Society for Computationa1 Methods in Engineering and the Department of Civi1 Engineering, Southampton University and organized by the Computationa1 Mechanics Institute of Southampton, England. The QE2 provided an ideal environment for the international meeting and one that was equa11y convenient for the USA and European re- searchers and offered a 10cation propitious to the interchange of ideas and c10se contact between participants. This book covers a wide range of different topics in Computat- iona1 Methods and Experimental Measurements with the main empha- sis on the re1ationships between experimental and ana1ytica1 5- utions. The first section deals with fluid dynamics problems and a 1arge number of app1ications. Section 2 considers geophysica1 fluid dynamics and describes some atmospheric models and their re1ated problems. Water resources are dealt with in Section 3 which describes some app1ications of porous media f10w and sur- face water mode11ing. Wave interaction problems are described in Section 4 and Section 5 considers some important heat transfer app1ications. Other sections - 6 & 7 - study problems re1ated to stress analysis and structura1 app1ications. Vibration pro- blems are becoming of fundamental importance in engineering and part of the Conference Proceedings - Section 8 - are dedicated to the study of experimental and computational models.
Computational Fluid Dynamics has now grown into a multidisciplinary activity with considerable industrial applications. The papers in this volume bring out the current status and future trends in CFD very effectively. They cover numerical techniques for solving Euler and Navier-Stokes equations and other models of fluid flow, along with a number of papers on applications. Besides the 88 contributed papers by research workers from all over the world, the book also includes 6 invited lectures from distinguished scientists and engineers.
Convection in Porous Media, 4th Edition, provides a user-friendly introduction to the subject, covering a wide range of topics, such as fibrous insulation, geological strata, and catalytic reactors. The presentation is self-contained, requiring only routine mathematics and the basic elements of fluid mechanics and heat transfer. The book will be of use not only to researchers and practicing engineers as a review and reference, but also to graduate students and others entering the field. The new edition features approximately 1,750 new references and covers current research in nanofluids, cellular porous materials, strong heterogeneity, pulsating flow, and more.
On June 19th 1999, the European Ministers of Education signed the Bologna Dec laration, with which they agreed that the European university education should be uniformized throughout Europe and based on the two cycle bachelor master's sys tem. The Institute for Theoretical Physics at Utrecht University quickly responded to this new challenge and created an international master's programme in Theoret ical Physics which started running in the summer of 2000. At present, the master's programme is a so called prestige master at Utrecht University, and it aims at train ing motivated students to become sophisticated researchers in theoretical physics. The programme is built on the philosophy that modern theoretical physics is guided by universal principles that can be applied to any sub?eld of physics. As a result, the basis of the master's programme consists of the obligatory courses Statistical Field Theory and Quantum Field Theory. These focus in particular on the general concepts of quantum ?eld theory, rather than on the wide variety of possible applica tions. These applications are left to optional courses that build upon the ?rm concep tual basis given in the obligatory courses. The subjects of these optional courses in clude, for instance, Strongly Correlated Electrons, Spintronics, Bose Einstein Con densation, The Standard Model, Cosmology, and String Theory.
The present work reflects a multi-disciplinary effort to address the topic of confined hydrosystems developed with a cross-fertilization panel of physics, chemists, biologists, soil and earth scientists. Confined hydrosystems include all situations in natural settings wherein the extent of the liquid phase is limited so that the solid-liquid and/or liquid-air interfaces may be critical to the properties of the whole system. Primarily, this so-called "residual" solution is occluded in pores/channels in such a way that decreases its tendency to evaporation, and makes it long-lasting in arid (Earth deserts) and hyper-arid (Mars soils) areas. The associated physics is available from domains like capillarity, adsorption and wetting, and surface forces. However, many processes are still to understand due to the close relationship between local structure and matter properties, the subtle interplay between the host and the guest, the complex intermingling among static reactivity and migration pathway. Expert contributors from Israel, Russia, Europe and US discuss the behaviour of water and aqueous solutes at different scale, from the nanometric range of carbon nanotubes and nanofluidics to the regional scale of aquifers reactive flow in sedimentary basins. This scientific scope allowed the group of participants with very different background to tackle the confinement topic at different scales. The book is organized according to four sections that include: i) flow, from nano- to mega-scale; ii) ions, hydration and transport; iii) in-pores/channels cavitation; iv) crystallization under confinement. Most of contributions relates to experimental works at different resolution, interpreted through classic thermodynamics and intermolecular forces. Simulation techniques are used to explore the atomic scale of interfaces and the migration in the thinnest angstrom-wide channels.
Overthe nearly 20 years of Kelvin probe force microscopy, an increasing interest in the technique and its applications has developed. This book gives a concise introduction into the method and describes various experimental techniques. Surface potential studies on semiconductor materials, nanostructures and devices are described, as well as application to molecular and organic materials. The current state of surface potential at the atomic scale is also considered. This book presents an excellent introduction for the newcomer to this field, as much as a valuable resource for the expert."
This book provides a profound understanding, which physical processes and mechanisms cause the heat transfer in composite and cellular materials. It shows models for all important classes of composite materials and introduces into the latest advances. In three parts, the book covers Composite Materials (Part A), Porous and Cellular Materials (Part B) and the appearance of a conjoint solid phase and fluid aggregate (Part C).
In general, combustion is a spatially three-dimensional, highly complex physi co-chemical process oftransient nature. Models are therefore needed that sim to such a degree that it becomes amenable plify a given combustion problem to theoretical or numerical analysis but that are not so restrictive as to distort the underlying physics or chemistry. In particular, in view of worldwide efforts to conserve energy and to control pollutant formation, models of combustion chemistry are needed that are sufficiently accurate to allow confident predic tions of flame structures. Reduced kinetic mechanisms, which are the topic of the present book, represent such combustion-chemistry models. Historically combustion chemistry was first described as a global one-step reaction in which fuel and oxidizer react to form a single product. Even when detailed mechanisms ofelementary reactions became available, empirical one step kinetic approximations were needed in order to make problems amenable to theoretical analysis. This situation began to change inthe early 1970s when computing facilities became more powerful and more widely available, thereby facilitating numerical analysis of relatively simple combustion problems, typi cally steady one-dimensional flames, with moderately detailed mechanisms of elementary reactions. However, even on the fastest and most powerful com puters available today, numerical simulations of, say, laminar, steady, three dimensional reacting flows with reasonably detailed and hence realistic ki netic mechanisms of elementary reactions are not possible."
This two-volume work gives the first detailed coherent treatment of a relatively young branch of statistical physics - nonlinear nonequilibrium and fluctuational dissipative thermodynamics. This area of research has taken shape rather recently: its de elopment began in 1959. The earlier theory - linear nonequilibrium ther modynamics - is in principle a simple special case of the new theory. Despite the fact that the title of the book includes the word 'nonlinear', it also covers the results of linear nonequilibrium thermodynamics. The presentation of the linear and nonlinear theories is done within a common theoretical framework that is not subject to the linearity condition. The author hopes that the reader will perceive the intrinsic unjty of this dis cipline, the uniformity and generality of its constituent parts. This theory has a wide variety of applications in various domains of physics and physical chemistry, enabling one to calculate thermal fluctuations in various nonlinear systems. The book is divided into two volumes. Fluctuation-dissipation theorems (or relations) of various types (linear, quadratic and cubic, classical and quantum) are considered in the first volume. There one encounters the Markov and non-Markov fluctuation-dissipation theorems (FDTs), theorems of the first, second and third kinds. Nonlinear FDTs are less known than their linear counterparts. The present second volume of the book deals with the advanced theory. It consists of four chapters. The connection and interdependence of the material in the various chapters of both volumes are illustrated in the accompanying diagram."
Thermal physics deals with collections of large numbers of particles - typically 10 to the 23rd power or so. Examples include the air in a balloon, the water in a lake, the electrons in a chunk of metal, and the photons given off by the sun. We can't possibly follow every detail of the motions of so many particles. So in thermal physics we assume that these motions are random, and we use the laws of probability to predict how the material as a whole ought to behave. Alternatively, we can measure the bulk properties of a material, and from these infer something about the particles it is made of. This book will give you a working understanding of thermal physics, assuming that you have already studied introductory physics and calculus. You will learn to apply the general laws of energy and entropy to engines, refrigerators, chemical reactions, phase transformations, and mixtures. You will also learn to use basic quantum physics and powerful statistical methods to predict in detail how temperature affects molecular speeds, vibrations of solids, electrical and magnetic behaviors, emission of light, and exotic low-temperature phenomena. The problems and worked examples explore applications not just within physics but also to engineering, chemistry, biology, geology, atmospheric science, astrophysics, cosmology, and everyday life.
The review articles in this book treat the overall nonlinear and complex behavior of nature from the viewpoint of such diverse research fields as fluid mechanics, condensed matter physics, biophysics, biochemistry, biology, and applied mathematics. Attention is focussed on a broad and comprehensive overview of recent developments and perspectives. Particular attention is given to the so-far unsolved problem of how to capture the mutual interplay between the microscopic and macroscopic dynamics that extend over various length and time scales. The book addresses researchers as well as graduate students.
We consider quantum dynamical systems (in general, these could be either Hamiltonian or dissipative, but in this review we shall be interested only in quantum Hamiltonian systems) that have, at least formally, a classical limit. This means, in particular, that each time-dependent quantum-mechanical expectation value X (t) has as i cl Ii -+ 0 a limit Xi(t) -+ x1 )(t) of the corresponding classical sys- tem. Quantum-mechanical considerations include an additional di- mensionless parameter f = iiiconst. connected with the Planck constant Ii. Even in the quasiclassical region where f~ 1, the dy- namics of the quantum and classicalfunctions Xi(t) and XiCcl)(t) will be different, in general, and quantum dynamics for expectation val- ues may coincide with classical dynamics only for some finite time. This characteristic time-scale, TIi., could depend on several factors which will be discussed below, including: choice of expectation val- ues, initial state, physical parameters and so on. Thus, the problem arises in this connection: How to estimate the characteristic time- scale TIi. of the validity of the quasiclassical approximation and how to measure it in an experiment? For rather simple integrable quan- tum systems in the stable regions of motion of their corresponding classical phase space, this time-scale T" usually is of order (see, for example, [2]) const TIi. = p,li , (1.1) Q where p, is the dimensionless parameter of nonlinearity (discussed below) and a is a constant of the order of unity.
In this monograph the recursion method is presented as a method for the analysis of dynamical properties of quantum and classical many-body systems in thermal equilibrium. Such properties are probed by many different experimental techniques used in materials science. Several representations and formulations of the recursion method are described in detail and documented with numerous examples, ranging from elementary illustrations for tutorial purposes to realistic models of interest in current research in the areas of spin dynamics and low-dimensional magnetism. The performance of the recursion method is calibrated by exact results in a number of benchmark tests and compared with the performance of other calculational techniques. The book addresses graduate students and researchers.
P. Levy's work on random walks with infinite moments, developed more than half a century ago, has now been fully appreciated as a foundation of probabilistic aspects of fractals and chaos as well as scale-invariant processes. This is the first book for physicists devoted to Levy processes. It includes thorough review articles on applications in fluid and gas dynamics, in dynamical systems including anomalous diffusion and in statistical mechanics. Various articles approach mathematical problems and finally the volume addresses problems in theoretical biology. The book is introduced by a personal recollection of P. Levy written by B. Mandelbrot."
Particles with fractional statistics interpolating between bosons and fermions have attracted considerable interest from mathematical physicists. In recent years it has emerged that these so-called anyons have rather unexpected applications, such as the fractional Hall effect, anyonic excitations in films of liquid helium, and high-temrperature superconductivity. Furthermore, they are discussed also in the context of conformal field theories. This book is a systematic and pedagogical introduction that considers the subject of anyons from many different points of view. In particular, the author presents the relation of anyons to braid groups and Chern-Simons field theory and devotes three chapters to physical applications. The book, while being of interest to researchers, primarily addresses advanced students of mathematics and physics.
This monograph gives a detailed introductory exposition of research results for various models, mostly two-dimensional, of directed walks, interfaces, wetting, surface adsorption (of polymers), stacks, compact clusters (lattice animals), etc. The unifying feature of these models is that in most cases they can be solved analytically. The methods used include transfer matrices, generating functions, recurrence relations, and difference equations, and in some cases involve utilization of less familiar mathematical techniques such as continued fractions and q-series. The authors emphasize an overall view of what can be learned generally of the statistical mechanics of anisotropic systems, including phenomena near surfaces, by studying the solvable models. Thus, the concept of scaling and, where known, finite-size scaling properties are elucidated. Scaling and statistical mechanics of anisoptropic systems in general are active research topics. The volume provides a comprehensive survey of exact model results in this field.
I welcome the opportunity to have my book translated, because of the great emphasis on two-phase flow and heat transfer in the English-speaking world, as related to research, university education, and industrial practice. The 1988 Springer-Verlag edition of "Warmeiibergang beim Kondensieren und beim Sieden" has been enlarged to include additional material on falling film evaporation (Chapter 12) and pressure drop in two-phase flow (Chapter 13). Minor errors in the original text have also been corrected. I would like to express my sincere appreciation to Professor Green, Asso ciate Professor of German at Rensselaer, for his excellent translation and co operation. My thanks go also to Professor Bergles for his close attention to technical and linguistic details. He carefully read the typescript and made many comments and suggestions that helped to improve the manuscript. I hope that the English edition will meet with' a favorable reception and contribute to better understanding and to progress in the field of heat transfer in condensation and boiling. February 1992 K. Stephan Preface to the German-Language Edition This book is a continuation of the series "Heat and Mass Transfer" edited by U. Grigull, in which three volumes have already been published. Its aim is to acquaint students and practicing engineers with heat transfer during condensa tion and boiling, and is intended primarily for students and engineers in mechanical, chemical, electrical, and industrial processing engineering."
The book covers the basics and some generalizations of Monte Carlo methods and its applications to discrete and field theoretic models. It covers the study of nonequilibrium models of granular media by computer simulation and pattern formation. Furthermore, the lectures deal with details of phenomena such as chaos, segregation, pattern formation and phase transitions, convection, fluidification, density waves, surface reaction and growth, spread of epidemics, acoustics, deformation, etc. The book addresses students in physics and scientific computation. It should be a valuable reference work for researchers as well. |
![]() ![]() You may like...
A Student's A-Z Of Psychology
V. van Deventer, M. Mojapelo-Batka
Paperback
![]() R354 Discovery Miles 3 540
The New Development of Technology…
Ronghuai Huang, Kinshuk, …
Hardcover
R3,604
Discovery Miles 36 040
STEM Research for Students Volume 2…
Julia H Cothron, Ronald N Giese, …
Hardcover
R2,894
Discovery Miles 28 940
|