![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Thermodynamics & statistical physics > Thermodynamics
Models for the mechanical behavior of porous media introduced more than 50 years ago are still relied upon today, but more recent work shows that, in some cases, they may violate the laws of thermodynamics. In The Thermophysics of Porous Media, the author shows that physical consistency requires a unique description of dynamic processes that involve porous media, and that new dynamic variables-porosity, saturation, and megascale concentration-naturally enter into the large-scale description of porous media. The new degrees of freedom revealed in this study predict new dynamic processes that are not associated with compressional motions.
The contents of this book correspond to Sessions VII and VIII of the International Workshop on Instabilities and Nonequilibrium Structures which took place in Vifia del Mar, Chile, in December 1997 and December 1999, respectively. We were not able to publish this book before and we apologize for this fact to the authors and participants of the meeting. We have made an effort to actualize the courses and articles which have been reviewed by the authors. Both Workshops were organized by Facultad de Ciencias Fisicas y Matematicas, Universidad de Chile, Instituto de Fisica of Universidad Cat61ica de Valparaiso and Centro de Fisica No Lineal y Sistemas Complejos de Santiago. We are glad to acknowledge here the support of the Facultad de Ingenieria of Universidad de los Andes of Santiago which also be from now on one of the organizing Institutions of future Workshops. Enrique Tirapegui PREFACE This book is divided in two parts. In Part I we have collected the courses given in Sessions VII and VIII of the Workshop and in Part II we include a selection of the invited Conferences and Seminars presented at both meetings.
This sixth Volume of the International Workshop on Instabilities and Nonequilibrium Structures is dedicated to the memory of my friend Walter Zeller, Professor of the Universidad C'at6lica df' Valparaiso and Vice-Director of the Workshop. Walter Zeller was much more than an organizer of this meeting: his enthusiasm, dedication and critical views were many times the essential ingredients to continue with a task which in occasions faced difficulties and incomprehensiolls. It is in great part due to him that the workshop has adquired to-day tradition. maturity and international recognition. This Volume should have been coedited by Walter and it is with df'ep emotion that I learned that his disciples Javier Martinez and Rolando Tiemann wanted as a last hommage to their Professor and friend to coedit tfus book. No me seria posible terminal' estas lineas sin pensar en la senora Adriana Gamonal de Zelln. qUf' ella encuentre en este libro la admiraci6n y reconocimiento hacia su marido de quiPIlf's [l\Prall sus discipulos, colegas y amigos.
Contents - 1. ORIGINS OF DTA: AN INTRODUCTION - 2. EQUIPMENT - 3. FACTORS IN QUALITATIVE DTA - 4. SELECTED APPLICATIONS OF QUALITATIVE DATA - 5. THEORETICAL BACKGROUND IN QUANTITATIVE DTA- 6. QUANTITATIVE DTA - 7. USE AND CORRELATION OF DTA RESULTS - 8. COMMERCIAL EQUIPMENT - United States - Germany - Great Britain - Hungary - Japan - APPENDIX - 1. PUBLICATIONS ON DTA - 2. AUTHOR INDEX FOR PUBLICATIONS - 3. ALPHABETICAL LIST OF MATERIALS STUDIED BY DTA - INDEX - Sample view at website
This book serves as an introduction to cryocooler technology and describes the principle applications of cryocoolers across a broad range of fields. It covers the specific requirements of these applications, and describes how the advantages and disadvantages of different cryocooler systems are taken into consideration. For example, Stirling coolers tend to be used only in space applications because of their high coefficient of performance, low weight and proven reliability, whilst Gifford-McMahon coolers are used for ground applications, such as in cryopumps and MRI shield cooling applications. Joule-Thomson cryocoolers are used in missile technology because of the fast cool down requirements. The cryocooler field is fast developing and the number of applications are growing because of the increasing costs of the cryogens such as Helium and Neon. The first chapter of the book introduces the different types of cryocoolers, their classification, working principles, and their design aspects, and briefly mentions some of the applications of these systems. This introductory chapter is followed by a number of contributions from prominent international researchers, each describing a specific field of application, the cooling requirements and the cryocooler systems employed. These areas of application include gas liquefaction, space technology, medical science, dilution refrigerators, missile systems, and physics research including particle accelerators. Each chapter describes the cooling requirements based on the end use, the approximate cooling load calculations, the criteria for cryocooler selection, the arrangement for cryocooler placement, the connection of the cooler to the object to be cooled, and includes genuine case studies. Intended primarily for researchers working on cryocoolers, the book will also serve as an introduction to cryocooler technology for students, and a useful reference for those using cryocooler systems in any area of application.
The problem of deriving irreversible thermodynamics from the re versible microscopic dynamics has been on the agenda of theoreti cal physics for a century and has produced more papers than can be digested by any single scientist. Why add to this too long list with yet another work? The goal is definitely not to give a gen eral review of previous work in this field. My ambition is rather to present an approach differing in some key aspects from the stan dard treatments, and to develop it as far as possible using rather simple mathematical tools (mainly inequalities of various kinds). However, in the course of this work I have used a large number of results and ideas from the existing literature, and the reference list contains contributions from many different lines of research. As a consequence the reader may find the arguments a bit difficult to follow without some previous exposure to this set of problems."
This book offers a unique treatment of building insulating products and the integration of these products with building components. This book was written for all those involved in building design, specification, construction, and commissioning, providing them with an understanding of and appreciation for the wide variety of thermal insulation products and technologies available for use in all types of buildings. The book proceeds from basic definitions and discussion of heat-transfer topics and thermal insulation concepts, to the design and use of these products. The impact of thermal insulation on dynamic building performance, including factors other than heating and cooling, is also discussed. The book does not require an advanced mathematical background. The authors provide sufficient information to provide a qualitative understanding, with more mathematical sections included for those interested in modeling and analysis. The basic physics associated with heat transfer in buildings are presented, along with the steady-state and transient analysis techniques needed for the effective implementation of thermal insulation and assemblies. Modern building design involves the integration of comfort, safety, economics, durability and cost considerations, all of which impact the selection and use of thermal insulation materials in buildings. In addition to theoretical explanations of the underlying science, the book details the properties and application of new thermal insulation materials, including vacuum panels, gas-filled panels, aerogels, phase-change materials, and radiation control technologies. Given its scope, the book will be of interest to researchers and building engineers wishing to understand the latest technologies and materials available, so as to achieve reduced energy consumption in commercial and residential buildings.
This textbook presents the fundamental concepts and theories in thermal physics and elementary statistical mechanics in a very simple, systematic and comprehensive way. This book is written in a way that it presents the topics in a holistic manner with end-of-chapter exercises and examples where concepts are supported by numerous solved examples and multiple-choice questions to aid self-learning. The textbook also contains illustrated diagrams for better understanding of the concepts. The book will benefit students who are taking introductory courses in thermal physics, thermodynamics and statistical mechanics.
Geostationary or equatorial synchronous satellites are a daily reminder of our space efforts during the past two decades. The nightly television satellite weather picture, the intercontinental telecommunications of television transmissions and telephone conversations, and the establishrnent of educational programs in remote regions on Earth are constant reminders of the presence of these satellites. As used here, the term 'geo stationary' must be taken loosely because, in the long run, the satellites will not remain 'stationary' with respect to an Earth-fixed reference frame. This results from the fact that these satellites, as is true for all satellites, are incessantly subject to perturbations other than the central-body attraction of the Earth. Among the more predominant pertur bations are: the ellipticity of the Earth's equator, the Sun and Moon, and solar radiation pressure. Higher harmonics of the Earth's potential and tidal effects also influence satellite motion, but they are of second order when compared to the predominant perturbations. This volume deals with the theory of geostationary satellites. It consists of seven chapters. Chapter 1 provides a general discussion including a brief history of geostationary satellites and their practical applications. Chapter 2 describes the Earth's gravitational potential field and the methodology of solving the geostationary satellite problem. Chapter 3 treats the effect of Earth's equatorial ellipticity (triaxiality) on a geostationary satellite. Chapter 4 deals with the effects of the Sun and Moon on the satellite's motion while Chapter 5 presents the combined influences of the Sun, Moon and solar radiation pressure. Chapter 6 describes various station-keeping techniques which may be used to make geostationary satellites practically stationary. Finally, Chapter 7 describes the verification of the theory developed in Chapters 3, 4 and 5 by utilizing the Early Bird synchronous satellite observed data as well as its numerically integrated results.
The thesis presents a systematic study of the Mpemba effect in a colloidal system with a micron-sized particle diffusing in a water bath. While the Mpemba effect, where a system's thermal relaxation time is a non-monotonic function of the initial temperature, has been observed in water since Aristotle's era, the underlying mechanism of the effect is still unknown. Recent studies indicate that the effect is not limited to water and has been studied both experimentally and numerically in a wide variety of systems. By carefully designing a double-well potential using feedback-based optical tweezers, the author demonstrates that an initially hot system can sometimes cool faster than an initially warm system. The author also presents the first observation in any system of another counterintuitive effect-the inverse Mpemba effect-where the colder of the two samples reaches the thermal equilibrium at a hot temperature first. The results for both the observations agree with theoretical predictions based on the Fokker-Planck equation. The experiments reveal that, for carefully chosen conditions, a strong version of both of the effects are observed where a system can relax to the bath temperature exponentially faster than under typical conditions.
Material particles, electrons, atoms, molecules, interact with one another by means of electromagnetic forces. That is, these forces are the cause of their being combined into condensed (liquid or solid) states. In these condensed states, the motion of the particles relative to one another proceeds in orderly fashion; their individual properties as well as the electric and magnetic dipole moments and the radiation and absorption spectra, ordinarily vary little by comparison with their properties in the free state. Exceptiotls are the special so-called collective states of condensed media that are formed under phase transitions of the second kind. The collective states of matter are characterized to a high degree by the micro-ordering that arises as a result of the interaction between the particles and which is broken down by chaotic thermal motion under heating. Examples of such pheonomena are the superfluidity of liquid helium, and the superconductivity and ferromagnetism of metals, which exist only at temperatures below the critical temperature. At low temperature states the particles do not exhibit their individual characteristics and conduct themselves as a single whole in many respects. They flow along capillaries in ordered fashion and create an undamped current in a conductor or a macroscopic magnetic moment. In this regard the material acquires special properties that are not usually inherent to it.
This book is concerned with the prediction of thermodynamic and transport properties of gases and liquids. The prediction of such properties is essential for the solution of many problems encountered in chemical and process engineering as well as in other areas of science and technology. The book aims to present the best of those modern methods which are capable of practical application. It begins with basic scientific principles and formal results which are subsequently developed into practical methods of prediction. Numerous examples, supported by a suite of computer programmes, illustrate applications of the methods. The book is aimed primarily at the student market (for both undergraduate and taught postgraduate courses) but it will also be useful for those engaged in research and for chemical and process engineering professionals.
- Focuses on a very physical and specific understanding of how humans measure and interpret the measurements of the quantity of time, unlike existing books which explore qualitative, speculative theories currently entertained in physics and philosophy.
This textbook on fire dynamics provides a comprehensive description of fuels involved in fires, definitions related to fire, thermodynamics for fire calculations, basics of transport processes and fundamental aspects of combustion related to fire, physical descriptions of premixed and non-premixed flames, detailed analysis of the characteristics of fires from solid and liquid fuels, including ignition, spread and burning rates and physical aspects of fire plumes, compartment fires and dust fires. The contents also highlight fundamental aspects related to the evaporation of liquid fuels and pyrolysis of solid fuels which are explained with simplified mathematical expressions. The book includes pedagogical features such as worked examples to illustrate mathematical calculations involved in fire analysis and end-of-chapter review questions. This book proves useful for students, researchers and industry professionals alike.
Thermodynamics is not the oldest of sciences. Mechanics can make that claim. Thermodynamicsisaproductofsomeofthegreatestscienti?cmindsofthe19thand 20th centuries. But it is suf?ciently established that most authors of new textbooks in thermodynamics ?nd it necessary to justify their writing of yet another textbook. I ?nd this an unnecessary exercise because of the centrality of thermodynamics as a science in physics, chemistry, biology, and medicine. I do acknowledge, however, that instruction in thermodynamics often leaves the student in a confused state. My attempt in this book is to present thermodynamics in as simple and as uni?ed a form as possible. As teachers we identify the failures of our own teachers and attempt to correct them. Although I personally acknowledge with a deep gratitude the appreciation for thermodynamics that I found as an undergraduate, I also realize that my teachers did not convey to me the sweeping grandeur of thermodynamics. Speci?cally the s- plicity and the power that James Clerk Maxwell found in the methods of Gibbs were not part of my undergraduate experience. Unfortunately some modern authors also seem to miss this central theme, choosing instead to introduce the thermodynamic potentials as only useful functions at various points in the development.
During the last decade, various powerful experimental tools have been developed, such as small angle X-ray and neutron scattering, X-ray and neutron reflection from interfaces, neutron spin-echo spectroscopy and quasi-elastic multiple light scattering and large scale computer simulations. Due to the rapid progress brought about by these techniques, one witnesses a resurgence of interest in the physicochemical properties of colloids, surfactants and macromolecules in solution. Although these disciplines have a long history, they are at present rapidly transforming into a new, interdisciplinary research area generally known as complex liquids or soft condensed matter physics: names that reflect the considerable involvement of the chemical and condensed matter physicists. This book is based on lectures given at a NATO ASI held in the summer of 1991 and discusses these new developments, both in theory and experiment. It constitutes the most up-to-date and comprehensive summary of the entire field.
This unique book is at the nexus of modern software programming practices and electrochemical process engineering. It is the authoritative text on developing open source software for many applications, including: * fuel cells; * electrolyzers; and * batteries. Written by experts in the field in the open source computational fluid dynamics (CFD) code suite OpenFOAM, this book is intended for process engineering professionals developing practical electrochemical designs for industry, as well as researchers focused on finding tomorrow's answers today. The book covers everything from micro-scale to cell-scale to stack-scale models, with numerous illustrations and programming examples. Starting from a clear explanation of electrochemical processes and simple illustrative examples, the book progresses in complexity through a range of diverse applications. After reading this book, the reader is able to take command and control of model development as an expert. The book is aimed at all engineers and scientists with basic knowledge of calculus and programming in C++.
The Surface Wettability Effect on Phase Change collects high level contributions from internationally recognised scientists in the field. It thoroughly explores surface wettability, with topics spanning from the physics of phase change, physics of nucleation, mesoscale modeling, analysis of phenomena such drop evaporation, boiling, local heat flux at triple line, Leidenfrost, dropwise condensation, heat transfer enhancement, freezing, icing. All the topics are treated by discussing experimental results, mathematical modeling and numerical simulations. In particular, the numerical methods look at direct numerical simulations in the framework of VOF simulations, phase-field simulations and molecular dynamics. An introduction to equilibrium and non-equilibrium thermodynamics of phase change, wetting phenomena, liquid interfaces, numerical simulation of wetting phenomena and phase change is offered for readers who are less familiar in the field. This book will be of interest to researchers, academics, engineers, and postgraduate students working in the area of thermofluids, thermal management, and surface technology.
This book gives a systematic investigation of convection in systems comprised of liquid layers with deformatable interfaces. This new edition includes completely updated and new material on flows in ultra thin films and brings up to date progress made in the technology on micro and nano scales. Also, this revised edition will reflect progress in thedynamics of complex fluids."
The Nature of Biological Systems as Revealed by Thermal Methods is a guide for experiments using thermal methods. The Editor has used his many years of experience to create a unique resource that will enable others with a less mathematical background, to realize the beauty and power of this tool and to gain a better understanding of biological problems. Biological calorimetry (and of course thermal analysis) is of increasing interest and is not covered thoroughly in other resources. The methods presented are macroscopic, for the rather inhomogeneous material (micromethods are often not possible or not pertinent). This book will help beginners in the field of thermal analysis or calorimetry understand the principles of thermodynamics being applied to biological systems. Biological systems are highly organized and very complex. The water and the different types of weak interactions among the macromolecules make the interpretation of thermal events very difficult. This book includes examples how to handle such problems. The Nature of Biological Systems as Revealed by Thermal Methods
is unique in that it: The book is an invaluable resource for anyone interested in thermodynamics, including practising professionals applying thermal methods to biological problems; researchers and graduate students beginning work using thermal methods; and specialists of thermal analysis starting work on biological problems. In addition, this book will be a useful resource for libraries and institutes as the only book covering quantitative thermal analysis of biological systems.
This book presents problems and solutions of the mathematical theories of thermoelasticity and magnetothermoelasticity. The classical, coupled and generalized theories are solved using the eigenvalue methodology. Different methods of numerical inversion of the Laplace transform are presented and their direct applications are illustrated. The book is very useful to those interested in continuum mechanics.
This book presents thermodynamic data on oxides in the system MgO-FeO-Fe2O3-Al2O3-SiO2. These data are produced by a process of assessment that involves the integration of thermochemical (calorimetric) and phase equilibrium data. The latter have been selected from a number of publications in high-pressure research conducted at pressures and temperatures in the range of 1 bar to several Giga Pascals and 300 to 2500 K respectively. A unique feature of the database is that the assessment involves not only the thermodynamic data on pure end member species, but also the data on multicomponent solutions. Since the solution description follows the format used in the popular thermodynamic computational packages such as FACTSAGE, ChemSage and Thermocalc, the database is easy to incorporate in the currently used databases in these packages. The database is highly useful to those working in the field of metallurgy (e.g. slags) and ceramics. It is essential for all those who do thermodynamic modeling of the terrestrial planetary interiors.
This book includes innovative gas-geothermometers and geobarometers, which are urgently needed to estimate the increasingly higher temperatures and pressures present at depth below the Solfatara volcano, owing to its on-going unrest. Therefore, in this book, new gas geoindicators, applicable up to ca. 1000 DegreesC and 3 kbar, have been implemented and applied to Solfatara fluids. The innovations of this book include: methane, having a sluggish behavior, was treated separately from fast-reacting carbon monoxide; deviations from the ideal gas behavior were considered; the effects of reaction kinetics were taken into account. This was possible because a dataset including many geochemical parameters and extending from 1983 to 2020 with a good sampling frequency is available for Solfatara, making it a case history probably unique worldwide. Nevertheless, the gas geoindicators described in this book can be applied to other similar systems. Thus, this book is of interest to many scientists studying gas geochemistry, geothermometry, and geobarometry for volcanic surveillance and the mitigation of the volcanic risk. |
![]() ![]() You may like...
Time Out - Premium Edition - A journey…
Robert Olesen
Hardcover
|