![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Biochemical engineering > Biotechnology
Nanobioanalytical Approaches to Medical Diagnostics reviews a range of nanobiomaterials and bioanalytical nano-devices for medical diagnostics. Nanobiomaterials and nano-devices are used in various bioanalytical and biochemical systems to provide real-time, point-of-care diagnostics. The specialized properties of nanoparticles allow them to be engineered and adapted to produce the required effect within a bioanalytical or biochemical system - offering targeted and detailed diagnostic results in a range of biomedical applications. This book covers both traditional biochemical and modern, combined nano-approaches to medical diagnostics. Chapters detail a range of in vitro, in vivo and ex vivo models for nanobioanalytics, including DNA and peptide-based, erythrocyte, microfluidic and more. In addition, sections also look at various different medical diagnostic applications, such as in cancer detection, infectious disease diagnosis and blood glucose sensing.
Multi-Chaos, Fractal and Multi-Fractional Artificial Intelligence of Different Complex Systems addresses different uncertain processes inherent in the complex systems, attempting to provide global and robust optimized solutions distinctively through multifarious methods, technical analyses, modeling, optimization processes, numerical simulations, case studies as well as applications including theoretical aspects of complexity. Foregrounding Multi-chaos, Fractal and Multi-fractional in the era of Artificial Intelligence (AI), the edited book deals with multi- chaos, fractal, multifractional, fractional calculus, fractional operators, quantum, wavelet, entropy-based applications, artificial intelligence, mathematics-informed and data driven processes aside from the means of modelling, and simulations for the solution of multifaceted problems characterized by nonlinearity, non-regularity and self-similarity, frequently encountered in different complex systems. The fundamental interacting components underlying complexity, complexity thinking, processes and theory along with computational processes and technologies, with machine learning as the core component of AI demonstrate the enabling of complex data to augment some critical human skills. Appealing to an interdisciplinary network of scientists and researchers to disseminate the theory and application in medicine, neurology, mathematics, physics, biology, chemistry, information theory, engineering, computer science, social sciences and other far-reaching domains, the overarching aim is to empower out-of-the-box thinking through multifarious methods, directed towards paradoxical situations, uncertain processes, chaotic, transient and nonlinear dynamics of complex systems.
Applied Environmental Metabolomics: Community Insights and Guidance from the Field brings together contributions from global experts who have helped to define and develop the exciting and rapid advances that are taking place in the field of environmental metabolomics. This book is aimed at expert users, students, researchers, and academics in metabolomics and systems biology. It not only demonstrates the best practice in experimental design but also provides insight into state-of-the-art instrumentation and the depth of analysis one can expect to get by using various sampling, chromatographic, mass spectrometric, and nuclear magnetic resonance (NMR) techniques. Common experimental and technical pitfalls are also highlighted. This book provides a unique insight into the world of environmental metabolomics and will help the practicing scientist avoid repeating similar costly mistakes, steering them efficiently toward the generation of high-quality data and high-impact publications.
Innovations in Fermentation and Phytopharmaceutical Technologies discusses recent advancements in the field of different bioprocessing aspects for the development of different reactors, fermented products and phytopharmaceuticals. Written by leading experts in the field, the book presents the basic principles of upstream processing techniques, advanced downstream process technologies, and recycling of by-products during formation/production of various fermented and phytopharmaceutical products. The informative chapters in the book outline an application-oriented path for academicians, researchers and scientists in the field of industrial fermentation technology and phytopharmaceutical production.
Microbial Consortium and Biotransformation for Pollution Decontamination presents techniques for the decontamination of polluted environs through potential microbes, particularly examining the benefits of its broad applicability, sustainability and eco-friendly nature. Utilizing global case studies to describe practical applications of the technology, the book offers insights into the latest research on advanced microbiological tools and techniques for the remediation of severe pollutants from the environment. Environmental researchers and environmental managers focusing on pollution and decontamination will find both key contextual information and practical details that are essential in understanding the use of microbial technology for combatting pollutants. Recent advancements in the field of NGS (next-generation sequencing) have allowed more detailed genomic, bioinformatics and metagenomic analyses of potential environmentally important microbes that have led to significant breakthroughs into key bio-degradative pathways. With the increase in human activities around the globe, toxic pollutants from multiple sources have contaminated the earth on a large number scale.
Immunomodulatory Effects of Nanomaterials: Assessment and Analysis provides an overview of the modulatory impact of nanomaterials on the immune system, as well as evaluative and analytical methods for assessing effects. Sections cover a range of common nanomaterials for biomedical use and how different properties can elicit varied responses from the immune system. The immunomodulatory effects of these materials are then discussed, with coverage on adverse and/or toxic effects on the immune system, as well as desired modulatory effects to improve efficacy of applied therapeutics. Readers will also learn about the best evaluation methods for immunomodulatory effects of nanomaterials and associated risks. This book is a useful reference for academics and researchers with an interest in immunology, but it is also idea for those working in the fields of materials science, biomedical engineering, pharmaceutical science, immunology and toxicology.
Food Proteomics: Technological Advances, Current Applications and Future Perspectives addresses many of the food proteomic issues in the industry today. Food proteomics continues to be an emerging field, becoming increasingly important in product innovation, food safety, food quality and health. The book is divided into sections describing the role of proteomics in the field of food science, conceptual background methodological aspects, and bioinformatic tools employed in the field. The book describes proteomic studies collected from the most relevant animal and vegetables species in food production and discusses important food challenges from a proteomic point-of-view. This is an essential and practical reference that provides analytical tools to help introduce technical innovations in the food industry with the latest scientific information useful and accessible to new researchers in the field as well as advanced.
Biomass-Derived Materials for Environmental Applications presents state-of-the-art coverage of bio-based materials that can be applied to address the growing global concern of pollutant discharge in the environment. The book examines the production, characterization and application of bio-based materials for remediation. Organized clearly by type of material, the book includes details on lignocellulosic materials, natural clays, carbonaceous materials, composites and advanced materials from natural origins. Readers will find an interdisciplinary and practical examination of these materials and their use in environmental remediation that will be valuable to environmental scientists, materials scientists, environmental chemists, and environmental engineers alike.
Biomass, Biofuels, and Biochemicals: Algae-Based Biomaterials for Sustainable Development, Biomedical, Environmental Remediation and Sustainability Assessment, a new release in the Biomass, Biofuels, and Biochemicals series, covers algae-based biomaterials-the green and renewable material that can be produced from various micro- and macro-algae species and utilized for several applications, including biomedical healthcare and environmental remediation. The book provides assessments of the current development of algae-based biomaterials, delivering information on diverse feedstocks and technologies for biomaterial production with a perspective surrounding sustainable development. In addition, circular bioeconomy aspects are included, giving researchers a comprehensive, sustainable development view. This valuable addition to the series delivers a much-needed reference for today's applications in biomedical and environmental remediation.
Biomaterials for Angiogenesis and Vasculogenesis covers the application of materials designed to encourage new blood vessel formation. Angiogenesis and vasculogenesis play an important role in tissue engineering and regenerative medicine research by promoting vascular networks inside engineered tissues and thereby increasing tissue healing and regeneration. However, researchers are faced with the challenge of finding suitable materials for improving angiogenesis and vascular formation in assays. This book reviews a broad range of biomaterials for the promotion of blood vessel genesis, from polymers and bioactive glass, to nanomaterial scaffolds and 3D angiogenic constructs. In addition, the book covers a variety of applications for biomaterials in tissue repair and regeneration, including cardiovascular regeneration, liver tissue engineering and much more. It will serve as a detailed reference for researchers in academia and industry, working in the fields of biomedical science and engineering, materials science, regenerative medicine and translational medicine.
Polymeric Biomaterials for Healthcare Applications details a broad range of polymeric biomaterials, methods of synthesis and preparation, and their various applications in healthcare and biomedicine. The book provides a fundamental overview of polymers and processing technologies to allow clinical scientists to explore the use of these polymers in alternative applications. A wide variety of healthcare applications are covered, including treatment for autoimmune diseases and bacterial infections, tissue engineering, gene delivery, wound dressing, and more. The book provides a core introductory text for clinical and materials scientists new to the area of polymeric biomaterials. This book will prove useful to academics and researchers in materials science, biomedical engineering, clinical science and pharmaceutical science.
Lactic Acid Bacteria in Food Biotechnology: Innovations and Functional Aspects describes the latest advancements in LAB applications in the development of functional foods and fermented foods, biotechnological products using LAB, i.e., bio chemicals (organic acids, bacteriocins, etc.), bioactive and functional biomolecules, comparative genomics of probiotic LAB, and genetically modified LAB in food industry. Bridging the gap between LAB-mediated fermented foods and bioactive compounds, vis-a-vis molecular aspects, this book enables the transition from research to application. The book details applications of LAB in fermented/functional foods including cereals, vegetables, fish, meat cheese, other dairy products, and much more. Other sections cover their biochemistry and biotechnology aspects, bio preservation by bio molecules produced by LAB, bioactive metabolites and biosurfactants, including their value in health and wellness and exploring the genomics of LAB from food to health. Finally, the book addresses genetically modified lactic acid bacteria in food and beverages.
Advanced Materials for Sustainable Environmental Remediation: Terrestrial and Aquatic Environments presents detailed, comprehensive coverage of novel and advanced materials that can be applied to address the growing global concern of the pollution of natural resources in waters, the air and soil. It provides fundamental knowledge on available materials and treatment processes, as well as applications, including adsorptive remediation and catalytic remediation. Organized clearly by type of material, this book presents a consistent structure for each chapter, including characteristics of the materials, basic and important physicochemical features for environmental remediation applications, routes of synthesis, recent advances as remediation medias, and future perspectives. This book offers an interdisciplinary and practical examination of available materials and processes for environmental remediation that will be valuable to environmental scientists, materials scientists, environmental chemists, and environmental engineers alike.
Advances in Applied Microbiology, Volume 118 continues the comprehensive reach of this widely read and authoritative review source in microbiology. Users will find invaluable references and information on a variety of areas relating to the topics of microbiology.
Combination Drug Delivery Approach as an Effective Therapy for Various Diseases explores the use of bioengineering tools in combination drug delivery approaches to control various diseases at different clinical stages of synergistic action, varying mechanisms of action, and during the suppression of drug resistance. The book presents fundamental knowledge on the experiential and experimental aspects of drug combination approaches in order to equip rational applications in preventing the emergence of resistance during the treatment of various diseases. It provides a holistic understanding of the principles behind formation, characterization, applications, regulations, toxicity, challenges and future perspectives of combination drug delivery approaches. It will be of interest to researchers and advanced graduate students in pharmaceutical science, chemistry, biology and medicine, as well as pharmaceutical companies and scientific organizations.
The depletion of fossil fuels is a major issue in energy generation; hence, biomass and renewable energy sources, especially bioenergy, are the solution. The dependence on bioenergy has many benefits to mitigate environmental pollution. It is imperative that the global society adopts these alternative, sustainable energy sources in order to mitigate the constant growth of climate change. Biomass and Bioenergy Solutions for Climate Change Mitigation and Sustainability highlights the challenges of energy conservation and current scenarios of existing fossil fuel uses along with pollution potential of burning fossil fuel. It further promotes the inventory, assessment, and use of biomass, pollution control, and techniques. This book provides the solution for climate change, mitigation, and sustainability. Covering topics such as biofuel policies, economic considerations, and microalgae biofuels, this premier reference source is an essential resource for environmental scientists, environmental engineers, government officials, business leaders, politicians, librarians, students and faculty of higher education, researchers, and academicians.
Nanotherapeutics in Cancer Vaccination and Challenges consolidates the current research on cancer nanomedicine and therapeutic cancer vaccination to explore the most effective and promising avenues. The book covers cancer vaccines before exploring nanotherapeutics, DNA and mRNA vaccines in cancer treatment. Finally, it considers regulatory and industrial perspectives on cancer vaccination and nanotherapeutics. This resource will be useful for pharmaceutical scientists and researchers focused on biomedical engineering, chemical engineering, vaccine development, and cancer immunotherapy, along with advanced students in these subjects. Cancer is arguably the most complex and challenging disease known to mankind. Over the last two-decades, significant advancements have been made in new and novel concepts of cancer nanomedicines. Therapeutic cancer vaccines may be utilized to inhibit further growth of advanced cancers and/or relapsed tumors that are refractory to conventional therapies, such as surgery, radiation therapy and chemotherapy.
Hybrid Nanomaterials for Drug Delivery covers a broad range of hybrid nanomaterials and nanocomposites used in drug delivery systems. The book reviews a variety of hybrid nanomaterials and structures, including polymer-lipid, chitosan-based, protein-inorganic, quantum dot hybrids, and more. The strengths, limitations and regulatory aspects of hybrid drug delivery systems are also discussed, allowing readers to make informed decisions when choosing to utilize hybrid nanomaterials. Users will find this to be an exciting and comprehensive look into this emerging area. It will be of particular interest to academics and researchers working in materials science, engineering, biomedical engineering, nanotechnology and pharmaceutical science. Multi nanocarrier-based hybrid systems are an emerging concept in the field of drug delivery that allow researchers to avoid some of the challenges faced when administering drugs, such as low bioavailability, development of drug resistance, toxicities, premature drug release, and therapeutic efficacy.
A systematic overview of the quickly developing field of bioengineering--with state-of-the-art modeling software! Computational Modeling and Simulation Examples in Bioengineering provides a comprehensive introduction to the emerging field of bioengineering. It provides the theoretical background necessary to simulating pathological conditions in the bones, muscles, cardiovascular tissue, and cancers, as well as lung and vertigo disease. The methodological approaches used for simulations include the finite element, dissipative particle dynamics, and lattice Boltzman. The text includes access to a state-of-the-art software package for simulating the theoretical problems. In this way, the book enhances the reader's learning capabilities in the field of biomedical engineering. The aim of this book is to provide concrete examples of applied modeling in biomedical engineering. Examples in a wide range of areas equip the reader with a foundation of knowledge regarding which problems can be modeled with which numerical methods. With more practical examples and more online software support than any competing text, this book organizes the field of computational bioengineering into an accessible and thorough introduction. Computational Modeling and Simulation Examples in Bioengineering: Includes a state-of-the-art software package enabling readers to engage in hands-on modeling of the examples in the book Provides a background on continuum and discrete modeling, along with equations and derivations for three key numerical methods Considers examples in the modeling of bones, skeletal muscles, cartilage, tissue engineering, blood flow, plaque, and more Explores stent deployment modeling as well as stent design and optimization techniques Generates different examples of fracture fixation with respect to the advantages in medical practice applications Computational Modeling and Simulation Examples in Bioengineering is an excellent textbook for students of bioengineering, as well as a support for basic and clinical research. Medical doctors and other clinical professionals will also benefit from this resource and guide to the latest modeling techniques.
Titanium Alloys for Biomedical Development and Applications: Design, Microstructure, Properties and Application systematically introduces basic theories and progress in the research of biomedical ss-Ti alloys achieved by researchers from different fields. It focuses on a high-strength and low elastic modulus biomedical ss-Ti alloy (TLM), etc. designed by the authors. The alloy design methods, microstructural characteristics, mechanical properties, surface treatment methods and biocompatibility of the TLM alloy are discussed in detail, along with a concise description of the medical devices made from this alloy and the application examples. This book will appeal to researchers as well as students from different disciplines, including materials science, biology, medicine and engineering fields.
Biomedical Product and Materials Evaluation: Standards and Ethics provides a much-needed overview of the procedures, issues, standards and ethical issues in the early development of biomedical products. The book covers a range of key biomedical products, from 3D printed organs and blood derived products, to stem calls and decellularized tissue products. Each chapter reviews a single product type, associated materials, biomedical applications, proven development strategies, and potential challenges. The core focus of the book is on the standardization and ethical aspects of biomedical product development, with these elements addressed and discussed in chapters dedicated to product evaluation. This is a useful reference for academics, researchers and industry professionals in R&D groups with an interest in biomaterial research and production, as well as those working in the fields of biomedical engineering, biotechnology and toxicology.
Microbiome Under Changing Climate: Implications and Solutions presents the latest biotechnological interventions for the judicious use of microbes to ensure optimal agricultural yield. Summarizing aspects of vulnerability, adaptation and amelioration of climate impact, this book provides an important resource for understanding microbes, plants and soil in pursuit of sustainable agriculture and improved food security. It emphasizes the interaction between climate and soil microbes and their potential role in promoting advanced sustainable agricultural solutions, focusing on current research designed to use beneficial microbes such as plant growth promoting microorganisms, fungi, endophytic microbes, and more. Changes in climatic conditions influence all factors of the agricultural ecosystem, including adversely impacting yield both in terms of quantity and nutritional quality. In order to develop resilience against climatic changes, it is increasingly important to understand the effect on the native micro-flora, including the distribution of methanogens and methanotrophs, nutrient content and microbial biomass, among others. |
![]() ![]() You may like...
Remembering St. Petersburg, Florida…
Scott Taylor Hartzell
Paperback
|