![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry
Corrosion engineers today spend enormous amounts of time and money searching multiple detailed sources and variable industry-specific standards to locate known remedies to corrosion equipment problems. Corrosion Atlas Series is the first centralized collection of case studies containing challenges paired directly with solutions together in one location. The second release of content in the series, Corrosion Atlas Case Studies: 2021 Edition, gives engineers expedient daily corrosion solutions for common industrial equipment, no matter the industry. Providing a purely operational level view, this reference is designed as concise case studies categorized by material and includes content surrounding the phenomenon, equipment appearance supported by a color image, time of service, conditions where the corrosion occurred, cause, and suggested remedies within each case study. Additional reference listings for deeper understanding beyond the practical elements are also included. Rounding out with an introductory foundational layer of corrosion principles critical to all engineers, Corrosion Atlas Case Studies: 2021 Edition delivers the daily tool required for engineers today to solve their equipment's corrosion problems.
Synthesis of Nanostructured Materials in Near and/or Supercritical Fluids: Methods, Fundamentals and Modeling offers a comprehensive review of the current status of research, development and insights on promising future directions, covering the synthesis of nanostructured materials using supercritical fluid-based processes. The book presents fundamental aspects such as high-pressure phase behavior of complex mixtures, thermodynamics and kinetics of adsorption from supercritical solutions, mechanisms of particle formation phenomena in supercritical fluid-based processes, and models for further development. It bridges the gap between theory and application, and is a valuable resource for scientists, researchers and students alike.
Sustainable Energy, Towards a Zero-Carbon Economy Using Chemistry, Electrochemistry and Catalysis provides the reader with a clear outline of some of the strategies, particularly those based on various chemical approaches, that have been put forward with the aim of reducing greenhouse gas emissions in order to achieve "zero carbon" by 2050. The author describes the chemistry of some of the processes involved, paying particular attention to those that involve heterogeneous catalytic steps and electrolysis methods. In cases in which the technology is already established, details are given of the reactor systems used. He discusses novel developments in the areas of transport, the production of essential products using renewable energy and the uses of sustainable biomass.
High Oleic Oils: Development, Properties and Uses is the first complete reference to address practical applications for this new and dynamic category of fats and oils that are essentially replacing partially hydrogenated oils in various food and nonfood uses. As a category, high oleic oils are highly stable, but like other fats and oils, there are differences in the composition and applications of the various types of high oleic oils. Their compositions allow for the production of a range of frying oils, increased shelf-life foods, functional shortenings and hard fats, and even industrial products not easily produced with nonhigh oleic oils. Information and know-how on these applications and advantages has been in high demand and short supply until now. Based on extensive commercial experience, seminars and presentations, Editor Frank Flider has identified common customer questions, needs and concerns about high oleic oils, and addresses them in this single comprehensive volume outlining development, composition, and utilization of high oleic oils. Through the individual expertise of a highly qualified team of contributing authors, this book outlines the development, composition, and utilization of these oils, making it of value to a wide range of readers, including the research and development industry and academic researchers.
Biomass Processes and Chemicals is written to assist the reader in understanding the options available for the production of chemicals from biomass. Petroleum-based and natural gas-based chemicals are well-established products that have served industry and consumers for more than one hundred years. However, time is running out and natural gas and petroleum are now being depleted. Thus, the need for alternative technologies to produce chemicals is necessary. Chemicals produced from sources are now coming into place for the establishment of a chemicals-from-biomass industry, hence this book covers these advancements.
Development in Wastewater Treatment Research and Processes: Microbial Degradation of Xenobiotics through Bacterial and Fungal Approach covers the active and applicable role that bacteria and fungi play in the degradation of xenobiotic compounds from the environment. The book gives up-to-date information on recent advancements in the field of environmental xenobiotics and how they disturb a plant's metabolism. The book also gives information on aerobic and anaerobic degradation of xenobiotic compounds through bacteria or fungi and/or a combined approach. Finally, the book covers the characteristics of environmental microbiology, biochemical engineering, agricultural microbiology, environmental engineering, and soil bioremediation.
60 Years of the Loeb-Sourirajan Membrane: Principles, New Materials, Modelling, Characterization and Applications bring forth theoretical advances, novel characterization techniques, materials development, advanced treatment processes, and emerging applications of membrane-based technologies. The trigger for writing this book is the 2020, 60th anniversary of the first asymmetric polymeric membrane invented by Dr. Sidney Loeb and Dr. Srinivasa Sourirajan (University of California, Los Angeles, USA) on the breakthrough discovery of the semipermeable membrane for seawater desalination. The book places emphasis on the advances of organic and inorganic membranes in different fields, covering not only the primary application of membranes for water and wastewater treatment but also other applications dealing with energy conversion and storage, organic solvent purification, gas separation, and biomedical processes.
Membrane Engineering in the Circular Economy: Renewable Sources Valorization in Energy and Downstream Processing in Agro-food Industry describes the modification of the general concept of "waste," including waste valorization as added-value products that are useful for energy production and biotechnology industries. Speaking to the relevance of this new vision, the book highlights the fundamentals of membrane operations in the exploitation of renewable sources for energy production and the valorization of agro-food waste at the industrial level. This book is an excellent resource for researchers, biologists, membranologists and engineers in chemistry, biochemical engineering, food sciences and the agro-food refinery industry.
Fully revised and updated, Processing Contaminants in Edible Oils, 2nd edition, presents the latest research on monochloropropanediol (MCPD) and glycidyl esters in edible oils. These potentially harmful contaminants are formed during the industrial processing of food oils during deodorization. A number of advancements in understanding these have been made since the publication of the first edition. These important changes, which impact industrial mitigation, analytical methods, toxicology and regulation, are highlighted for up-to-date reference. The mechanisms of formation for MCPD and glycidyl ester contaminants, as well as research identifying possible precursor molecules are reviewed, as are strategies which have been used successfully to decrease the concentrations of these contaminants. From the removal of precursor molecules before processing, modifications of deodorization protocol, to approaches for the removal of these contaminants after the completion of processing, methods of mitigating and eliminating contaminants are presented.
Handbook of Microbial Nanotechnology is a collection of the most recent scientific advancements in the fundamental application of microbial nanotechnology across various sectors. This comprehensive handbook highlights the vast subject areas of microbial nanotechnology and its potential applications in food, pharmacology, water, environmental remediation, etc. This book will serve as an excellent reference handbook for researchers and students in the food sciences, materials sciences, biotechnology, microbiology and in the pharmaceutical fields. Microbial nanotechnology is taking part in creating development and innovation in various sectors. Despite the participation of microbial nanotechnology in modern development, there are some hindrances. The lack of information, the possibility of adverse impacts on the environment, human health, safety and sustainability are still a challenge. This handbook addresses these challenges.
Biochemicals and Materials Production from Sustainable Biomass Resources provides a detailed overview of the experimentally developed approaches and strategies that facilitate carbon-based materials and fine chemicals derivation from biomass feedstocks with robust catalyst systems and renewed conversion routes. In addition, the book highlights theoretical methods like techno-economic analysis of biobutanol synthesis. As academia and industry are now striving to substitute fossil-based chemicals with alternative renewable resources, second-generation lignocellulosic biomass which does not depend on the food cycle has become increasingly important. Lignocellulosic biomass is composed of three major polymeric components - lignin, cellulose and hemicellulose. The polymers can be degraded into monomeric counterparts through selective conversion routes like hydrolysis of cellulose to glucose and of hemicellulose to xylose.
PEDOT is currently the most widely used polymeric material in research and development. Over the past 10 years, PEDOT has been investigated for potential organic thermoelectric applications because of its superior thermoelectric and mechanical properties compared with other conductive polymers. However, many challenges remain to be solved before it is translated into key technologies. Advanced PEDOT Thermoelectric Materials summarizes current progress and the challenges of PEDOT thermoelectric materials, while clarifying directions for future development. This book provides a comprehensive overview of chemical, physical, and technical information about this organic thermoelectric polymer. The authors also give details about the theoretical basis of PEDOT, including preparation and characterization, and its development as a high-performance thermoelectric material.
Multiple Biological Activities of Unconventional Seed Oils brings detailed knowledge concerning the biological properties of oils (antioxidant, antimicrobial, antidiabetic, antitumor, anti-inflammatory, etc.), the content of individual substances with health-promoting properties, methods for biological properties assay, the influence of raw material quality and technological processes on the quality of oils, and possible raw materials and oil contaminants with adverse health effects. The book's chapters also highlight the unique properties of new oils, along with their biological activities. Less than a decade ago, the vegetable oils on grocery store shelves were derived from conventional oil seeds e.g., cotton, groundnut, sesame, corn sunflower and soybean. However, as consumers began to understand how fat intake affects overall health, researchers, plant growers and food manufacturers started to produce oils from unconventional sources. This book highlights what we've learned in the process.
Sensory Analysis for the Development of Meat Products: Methodological Aspects and Practical Applications highlights the application of sensory analysis in the development of meat products. It presents the background and historical aspects of sensory evaluation on the characterization and development of meat products. Divided into two sections, the book discusses fundamental concepts, methodological approaches, statistical analysis, innovative methods, and presents case studies using these approaches. Chapter include definitions, applications, literature reviews, recent developments, methods and end of chapter glossaries. Researchers in sensory analysis and meat processing, as well as new product developers, will benefit from this comprehensive resource on the topics discussed.
Nutraceutical and Functional Food Components: Effects of Innovative Processing Techniques, Second Edition highlights the impact of recent food industry advances on the nutritional value, functional properties, applications, bioavailability, and bioaccessibility of food components. This second edition also assesses shelf-life, sensory characteristics, and the profile of food products. Covering the most important groups of food components, including lipids, proteins, peptides and amino acids, carbohydrates, dietary fiber, polyphenols, carotenoids, vitamins, aromatic compounds, minerals, glucosinolates, enzymes, this book addresses processing methods for each. Food scientists, technologists, researchers, nutritionists, engineers and chemists, agricultural scientists, other professionals working in the food industry, as well as students studying related fields, will benefit from this updated reference.
Innovation Strategies for the Food Industry: Tools for Implementation, Second Edition explores how process technologies and innovations are implemented in the food industry, by i.e., detecting problems and providing answers to questions of modern applications. As in all science sectors, Internet and big data have brought a renaissance of changes in the way academics and researchers communicate and collaborate, and in the way that the food industry develops. The new edition covers emerging skills of food technologists and the integration of food science and technology knowledge into the food chain. This handbook is ideal for all relevant actors in the food sector (professors, researchers, students and professionals) as well as for anyone dealing with food science and technology, new products development and food industry.
Membrane Separation Processes: Theories, Problems, and Solutions provides graduate and senior undergraduate students and membrane researchers in academia and industry with the fundamental knowledge on the topic by explaining the underlying theory that is indispensable for solving problems that occur in membrane separation processes. All major membrane processes are discussed, and an economic analysis is provided. Separation processes such as RO, UF, MF, RO, PRO and MD are thoroughly discussed. During the last two decades, the scope of the R&D of membrane separation processes has been significantly broadened. Other sections in the book cover membrane contactor and membrane adsorption. In addition, hybrid systems in which two or more membrane systems are combined are now being investigated for large-scale applications.
Production of Top 12 Biochemicals Selected by USDOE from Renewable Resources: Status and Innovation covers all important technological aspects of the production of biochemicals from renewable feedstock. All the important technological aspects of biomass conversion for example biomass pretreatment, enzymatic hydrolysis for cellulosic sugars production followed by the fermentation into chemicals and downstream recovery of the products is reviewed. Recent technological advancements in suitable microorganism development, bioprocess engineering for biomass conversion for cellulosic sugars production and various fermentation strategies and downstream recovery of these top 12 products is presented. Each bio-chemical selected by US Department of Energy i.e. ethanol, xylitol/sorbitol, furans (5-HMF, 2,5-FDCA,), glycerol & its derivatives, hydrocarbons) isoprene, iso-butadienes and others), lactic acid, succinic acid, 3-hydroxy propionic acid, levulinic acid and biohydrogen/biogas is included in a single book chapter. In addition to the technical aspects of these 12 biochemicals, general technological challenges dealing with lignocellulose refining, perspectives and solutions are elaborated in the book. Also, life cycle analysis, techno-economic viability, and sustainability index of biofuels/biochemicals are comprehensively reviewed in the book.
Innovation in Nano-polysaccharides for Eco-sustainability: From Science to Industrial Applications presents fundamentals, advanced preparation methods, and novel applications for polysaccharide-based nanomaterials. Sections cover the fundamental aspects of polysaccharides and nano-polysaccharides, including their structure and properties, surface modification, processing and characterization. Key considerations are explained in detail, including the connection between the substituents of polysaccharides and their resulting physical properties, renewable resources, their sustainable utilization, and specific high value applications, such as pharmaceuticals, photocatalysts, energy, and wastewater treatment, and more. This is a valuable resource for researchers, scientists, and advanced students across bio-based polymers, nanomaterials, polymer chemistry, sustainable materials, biology, materials science and engineering, and chemical engineering. In industry, this book will support scientists, R&D, and engineers looking to utilize bio-based materials in advanced industrial applications.
Advancements in Polymer-Based Membranes for Water Remediation describes the advanced membrane science and engineering behind the separation processes within the domain of polymer-based membrane systems in water remediation. Emphasis has been put on several aspects, ranging from fundamental concepts to the commercialization of pressure and potential driven membranes, updated with the latest technological progresses, and relevant polymer materials and application potential towards water treatment systems. Also included in this book are advances in polymers for membrane application in reverse osmosis, nanofiltration, ultrafiltration, microfiltration, forward osmosis, and polymeric ion-exchange membranes for electrodialysis and capacitive deionization. With its critical analyzes and opinions from experts around the world, this book will garner considerable interest among actual users, i.e., scientists, engineers, industrialists, entrepreneurs and students.
Self-Healing Materials: Principles and Technology, Second Edition provides engineers and researchers in both industry and academia the information they need to deploy self-healing technology in a range of potential applications, from adhesives to the automotive industry, and from electronics to biomedical implants. Sections discuss the principal mechanisms of self-healing and how these are applied to the development of materials that have the ability to repair themselves, either with minimal or no human intervention. In addition, the book provides a theoretical background and a review of the major research undertaken to date, providing a thorough grounding in this concept and related technology. Other sections compare the parameters of different self-healing technological processes, such as fault detection mechanisms, methods of triggering and turning off the healing processes, the activation energy of self-healing processes, the means and methods of delivery of the healing substances to the defect locations, self-healing timescale (rate of self-healing), and the extent of self-healing (healing efficiency, recovery of properties, etc.). In addition, mathematical modeling of the processes of self-healing (molecular dynamics simulation), the morphology of healed areas, and other important topics are thoroughly discussed.
Graphene to Polymer/Graphene Nanocomposites: Emerging Research and Opportunities brings together the latest advances and cutting-edge methods in polymer/graphene nanocomposites that offer attractive properties and features, leading to a broad range of valuable applications. The initial chapters of this book explain preparation, properties, modification, and applications of graphene and graphene-based multifunctional polymeric nanocomposites. Later, the state-of-the-art potential of polymer/graphene nanocomposites for hierarchical nanofoams, graphene quantum dots, graphene nanoplatelets, graphene nanoribbons, etc., has been elucidated. The subsequent chapters focus on specific innovations and applications including stimuli-responsive graphene-based materials, anticorrosive coatings, applications in electronics and energy devices, gas separation and filtration membrane applications, aerospace applications, and biomedical applications. Throughout the book, challenges, and future opportunities in the field of polymer/graphene nanocomposites are discussed and analyzed. This is an important resource for researchers, scientists, and students/academics working with graphene and across the fields of polymer composites, nanomaterials, polymer science, chemistry, chemical engineering, biomedical engineering, materials science, and engineering, as well those in an industrial setting who are interested in graphene or innovative materials.
Handbook of Foaming and Blowing Agents, Second Edition includes the most current information on foaming technology, guiding users on the proper selection of formulation, which is highly dependent on the mechanisms of action of blowing agents and foaming agents, as well as dispersion and solubility. The book includes properties of 23 groups of blowing agents and the typical range of technical performance for each group, including general properties, physical-chemical properties, health and safety, environmental impact, and applications in different products and polymers. All information is illustrated by chemical reactions and diagrams. Chapters in the book look at foaming mechanisms with the use of solid blowing agents, which are decomposed to the gaseous products by application of heat, production of gaseous products by chemical reaction, and foaming by gases and evaporating liquids.
Environmentally Sustainable Corrosion Inhibitors: Fundamentals and Industrial Applications covers the latest research developments in environmentally friendly, sustainable corrosion inhibitors. The book addresses the fundamental characteristics, synthesis, characterization and mechanisms of corrosion inhibitors. In addition, it presents a chronological overview of the growth of the field, with numerous examples of its broad-ranging industrial applications in a.o. food, the environment, electronics, and the oil and gas industries. The book concludes with discussions about commercialization and economics. This is an indispensable reference for chemical engineers and chemists working in R&D and academia who want to learn more about environmentally-friendly, sustainable corrosion inhibitors systems. |
You may like...
Food Sustainability and the Media…
Marta Antonelli, Pierangelo Isernia
Paperback
R2,936
Discovery Miles 29 360
14th International Symposium on Process…
Yoshiyuki Yamashita, Manabu Kano
Hardcover
R11,098
Discovery Miles 110 980
Resonance - Long-Lived Waves
Leonard Dobrzynski, Housni Al-Wahsh, …
Paperback
R3,925
Discovery Miles 39 250
3D and 4D Printing of Polymer…
Kishor Kumar Sadasivuni, Kalim Deshmukh, …
Paperback
R5,549
Discovery Miles 55 490
Practical Aspects of Vaccine Development
Parag Kolhe, Satoshi Ohtake
Paperback
R3,975
Discovery Miles 39 750
Case Studies on Food Experiences in…
Susanne Doppler, Adrienne Steffen
Paperback
R3,967
Discovery Miles 39 670
31st European Symposium on Computer…
Metin Turkay, Rafiqul Gani
Hardcover
R10,606
Discovery Miles 106 060
Dietary Lipids: Nutritional and…
CrÃspulo Gallegos-Montes, Victoria Ruiz Méndez
Hardcover
R3,923
Discovery Miles 39 230
|