![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry
Multidisciplinary Microfluidic and Nanofluidic Lab-on-a-Chip: Principles and Applications provides chemists, biophysicists, engineers, life scientists, biotechnologists, and pharmaceutical scientists with the principles behind the design, manufacture, and testing of life sciences microfluidic systems. This book serves as a reference for technologies and applications in multidisciplinary areas, with an emphasis on quickly developing or new emerging areas, including digital microfluidics, nanofluidics, papers-based microfluidics, and cell biology. The book offers practical guidance on how to design, analyze, fabricate, and test microfluidic devices and systems for a wide variety of applications including separations, disease detection, cellular analysis, DNA analysis, proteomics, and drug delivery. Calculations, solved problems, data tables, and design rules are provided to help researchers understand microfluidic basic theory and principles and apply this knowledge to their own unique designs. Recent advances in microfluidics and microsystems for life sciences are impacting chemistry, biophysics, molecular, cell biology, and medicine for applications that include DNA analysis, drug discovery, disease research, and biofluid and environmental monitoring.
Safety and Regulatory Issues of Nanoencapsulated Food Ingredients, a volume in the Nanoencapsulation in the Food Industry series, discusses the safety and toxicity potential of food-relevant and edible nanostructures, along with legislation issued by different countries and organizations governing their safety. The book's chapters cover safety issues of nanocapsules in food matrices, their possible toxicity effects, and in vitro and in vivo assays which are explored to underline their impact. Authored by a team of global experts in the fields of nano and microencapsulation of food, nutraceutical and pharmaceutical ingredients, this title is of great value to those engaged in fields surrounding nanoencapsulation.
Soft Robotics aims at providing state of art on research and potential approaches of soft robotics. It particularly challenges the traditional thinking of engineers, as the confluence of technologies, ranging from new materials, sensors, actuators and production techniques to new design tools, will make it possible to create new systems whose structures are almost completely made of soft materials, which bring about entirely new functions and behaviors, similar in many ways to natural systems. This is a huge research topic, "hot" and with a huge potential due to new possibilities offered by these systems to cope with problems that cannot be addressed by robots built from rigid bodies.
Domino Effect: Its Prediction and Prevention, Volume Five in the Methods in Chemical Process Safety series, focuses on the process of learning from experience, including elements of process safety management, human factors in the chemical process industries, and the regulation of chemical process safety, including current approaches. Users will find this book to be an informative tool and user manual for process safety for a variety of professionals. This new release focuses on Domino effect - Case histories and accident statistics, the state-of-the-art in domino effect modeling, Fire Driven Domino Effect, Mitigation of Domino Effect, and much more.
Adhesive Bonding: Science, Technology and Applications, Second Edition guides the reader through the fundamentals, mechanical properties and applications of adhesive bonding. This thoroughly revised and expanded new edition reflects the many advances that have occurred in recent years. Sections cover the fundamentals of adhesive bonding, explaining how adhesives and sealants work, and how to assess and treat surfaces, how adhesives perform under stress and the factors affecting fatigue and failure, stress analysis, environmental durability, non-destructive testing, impact behavior, fracture mechanics, fatigue, vibration damping, and applications in construction, automotive, marine, footwear, electrical engineering, aerospace, repair, electronics, biomedicine, and bonding of composites. With its distinguished editor and international team of contributors, this book is an essential resource for industrial engineers, R&D, and scientists working with adhesives and their industrial applications, as well as researchers and advanced students in adhesion, joining, polymer science, materials science and mechanical engineering.
Phenolic compounds are secondary metabolites found in legumes, grains, fruits, algae, leaves and many other dietary sources. However, the abundance and differences in chemical structure, solubility, toxicological safety and, therefore, bioactivity and functional effects in humans. This book covers the basic chemical composition and structure of phenolic compounds and focus on their technological applications in food models and products: nondairy and dairy beverages, bakery, and meat-based foods. Additionally, food preservation aspects, including the effects of polyphenols additions on the product's shelf-life, processing and recovery of polyphenols from plant materials, antioxidant and antiproliferative aspects of polyphenol-rich extracts are considered and holistically debated.
Nanoemulsions are produced by mixing an oil phase with an aqueous phase under shear pressure. This procedure yields uniform populations of oil droplets ranging in diameter from 200 to 8 nm that are kinetically stable colloidal substances with enhanced properties compared to the conventional emulsion substances. Nanoemulsions have broad potential applications in agriculture, food, health, and biomedical sciences. Nanoemulsion Applications in Agriculture, Food, Health, and Biomedical Sciences focuses on the aspects of nanoemulsion-like synthesis, characterization, and more and examines recent trends in their applications within a variety of relevant fields. Nanoemulsions have broad application in many different fields; without emulsification, process product development would not be possible. Covering topics such as cancer treatment, healthcare applications, and food manufacturing, this book is essential for scientists, doctors, researchers, post-graduate students, medical students, government officials, hospital directors, professors, and academicians.
Automotive Plastics and Composites: Materials and Processing is an essential guide to the use of plastic and polymer composites in automotive applications, whether in the exterior, interior, under-the-hood, or powertrain, with a focus on materials, properties, and processing. The book begins by introducing plastics and polymers for the automotive industry, discussing polymer materials and structures, mechanical, chemical, and physical properties, rheology, and flow analysis. In the second part of the book, each chapter is dedicated to a category of material, and considers the manufacture, processing, properties, shrinkage, and possible applications, in each case. Two chapters on polymer processing provide detailed information on both closed-mold and open-mold processing. The final chapters explain other key aspects, such as recycling and sustainability, design principles, tooling, and future trends. This book is an ideal reference for plastics engineers, product designers, technicians, scientists, and R&D professionals who are looking to develop materials, components, or products for automotive applications. The book also intends to guide researchers, scientists, and advanced students in plastics engineering, polymer processing, and materials science and engineering.
The Thermodynamics of Phase and Reaction Equilibria, Second Edition, provides a sound foundation for understanding abstract concepts of phase and reaction equilibria (e.g., partial molar Gibbs energy, fugacity, and activity), and shows how to apply these concepts to solve practical problems using numerous clear examples. Available computational software has made it possible for students to tackle realistic and challenging problems from industry. The second edition incorporates phase equilibrium problems dealing with nonideal mixtures containing more than two components and chemical reaction equilibrium problems involving multiple reactions. Computations are carried out with the help of Mathcad (R).
Green Sustainable Process for Chemical and Environmental Engineering and Science: Microbially-Derived Biosurfactants for Improving Sustainability in Industry explores the role biosurfactants may play in providing more sustainable, environmentally benign, and economically efficient solutions for mitigating challenges experienced in the industrial sector. Sections cover an introduction to their production and review their application across a broad range of industry applications, from polymer and biofuel production to lubrification and corrosion protection. Drawing on the knowledge of its expert team of global contributors, the book provides useful insights for all those currently or potentially interested in developing or applying biosurfactants in their own work. As awareness and efforts to develop greener products and processes continue to grow in the chemistry community, biosurfactants are garnering much attention for the potential roles they can play, both in reducing the use and production of more toxic products and as tools for addressing existing problems.
Pharmaceuticals in Marine and Coastal Environments: Occurrence, Effects, and Challenges in a Changing World is divided into three sections that address a) coastal areas as the main entrance of pharmaceuticals into the ocean, b) the occurrence and distribution of pharmaceuticals in the environmental compartments of the ocean media, and c) the effects that such pollutants may cause to the exposed marine organisms. With its comprehensive discussions, the book provides a wide depiction of the current state-of-the-art on these topics in an effort to open new sources of investigation and find suitable solutions.
Processing Technology for Bio-Based Polymers: Advanced Strategies and Practical Aspects brings together the latest advances and novel technologies surrounding the synthesis and manufacture of biopolymers, ranging from bio-based polymers to synthetic polymers from bio-derived monomers. Sections examine bio-based polymer chemistry, discuss polymerization process and emerging design technologies, cover manufacturing and processing approaches, explain cutting-edge approaches and innovative applications, and focus on biomedicals and other key application areas. Final chapters provide detailed discussion and an analysis of economic and environmental concerns, practical considerations, challenges, opportunities and future trends. This is a valuable resource for researchers, scientists and advanced students in polymer science, bio-based materials, nanomaterials, plastics engineering, biomaterials, chemistry, biotechnology, and materials science and engineering, as well as R&D professionals, engineers and industrialists interested in the development of biopolymers for advanced products and applications.
Sensory evaluation is applied in very diverse and sometimes unexpected sectors. Nonfood Sensory Practices aims to show how sensory professionals from sectors other than food have embraced sensory evaluation methods for product development and communication of their products' sensory properties. This book is thus intended as a first assessment of what is happening in nonfood sectors. It will open perspectives to those sensory professionals who wish to apply and adapt their expertise in food sensory science to other types of products, as well as to those working in nonfood sectors but with lesser background in sensory evaluation. Many nonfood products are intrinsically complex. They can be used in diverse ways, often in strong interaction with context and - unlike food - over several hours, days or months. This book shows how sensory professionals have adapted to these specificities, not to mention specific needs in terms of panel management and different ways to deal with consumers, users, customers or even sometimes with patients. First chapters present general methodological principles that will allow readers to fully apprehend the use of sensory practices. Then, contributions from many professionals in nonfood sectors will help to realize and promote the potential added value of sensory evaluation to their own field of application.
Polymer-Based Advanced Functional Composites for Optoelectronic and Energy Applications explains how polymer-based smart composites and nanocomposites can be prepared and utilized for novel optical, sensor and energy-related applications. The book begins with an introductory section on the fundamentals of smart polymer composites, including structure-property relationships and conjugated polymers. Other sections examine optical applications, including the use of polymer-based smart composites for luminescent solar concentrators, electro-chromic applications, light conversion applications, ultraviolet shielding applications, LED encapsulation applications, sensor applications, including gas-sensing, strain sensing, robotics and tactile sensors, with final sections covering energy-related applications, including energy harvesting, conversion, storage, vibrational energy harvesting, and more. This is an essential guide for researchers, scientists and advanced students in smart polymers and materials, polymer science, composites, nanocomposites, electronics and materials science. It is also a valuable book for scientists, R&D professionals and engineers working with products that could utilize smart polymer composites.
The Latest Research and Development of Minerals in Human Nutrition, Volume 96 in the Advances in Food and Nutrition Research series, highlights new advances in the field, with this new volume presenting interesting chapters written by an international board of authors.
Biodegradable Polymers and Composites - Process Engineering to Commercialization is designed in such a way that it not only gives basic knowledge but also contains information regarding conventional and advanced technologies, socio-economic aspects, techno-economic feasibility, modelling tools and detailed Life Cycle Analysis in biopolymer production. The book discusses the advantages and importance of biopolymers over the conventionally produced plastics. Biodegradable Polymers and Composites highlights: the conventional and advanced strategies for biopolymer production; information regarding process engineering and commercialization of biopolymers; models and available modelling techniques in the sector of biopolymer production; and global case studies, opportunities and challenges (technical constraints, institutional constraints and social constraints) associated with biopolymer production.
Green Sustainable Process for Chemical and Environmental Engineering and Science: Biosurfactants for the Bioremediation of Polluted Environments explores the use of biosurfactants in remediation initiatives, reviewing knowledge surrounding the creation and application of biosurfactants for addressing issues related to the release of toxic substances in ecosystems. Sections cover their production, assessment and optimization for bioremediation, varied pollutant degradation applications, and a range of contaminants and ecological sites. As awareness and efforts to develop greener products and processes continues to grow, biosurfactants are garnering more attention for the potential roles they can play in reducing the use and production of more toxic products. Drawing on the knowledge of its expert team of global contributors, this book provides useful insights for all those currently or potentially interested in developing or applying biosurfactants in their own work.
Engineered Polymeric Fibrous Materials explains cutting edge techniques for the engineering of fibrous materials from physical, mechanical, and chemical points of view. Both conventional and nanofibers are described in this uniquely comprehensive book, for a wide range of applications including biomedical, automotive, aerospace, agriculture, energy, and environmental. This book refers to recent advances made in both academia and industry, in topics such as fiber-reinforced composites, fibrous thermal insulators, drug delivery and tissue engineering, and smart textiles and energy, and explains how fibrous structures are engineered to offer new solutions to important problems. The first two chapters provide basic introductory information to allow a wider range of readers to engage with the book.
Membrane-Based Hybrid Processes for Wastewater Treatment analyzes and discusses the potential of membrane-based hybrid processes for the treatment of complex industrial wastewater, the recovery of valuable compounds, and water reutilization. In addition, recent and future trends in membrane technology are highlighted. Industrial wastewater contains a large variety of compounds, such as heavy metals, salts and nutrients, which makes its treatment challenging. Thus, the use of conventional water treatment methods is not always effective. Membrane-based hybrid processes have emerged as a promising technology to treat complex industrial wastewater.
Materials Science in Photocatalysis provides a complete overview of the different semiconductor materials, from titania to third-generation photocatalysts, examining the increasing complexity and novelty of the materials science in photocatalytic materials. The book describes the most recommended synthesis procedure for each of them and the suitable characterization techniques for determining the optical, structural, morphological, and physical-chemical properties. The most suitable applications of the photocatalysts are described in detail, as well as their environmental applications for wastewater treatment, gaseous effluents depollution, water splitting, CO2 ?xation, selective organic synthesis, coupling reactions, and other selective transformations under both UV light and visible-light irradiation. This book offers a useful reference for a wide audience from students studying chemical engineering and materials chemistry to experienced researchers working on chemical engineering, materials science, materials engineering, environment engineering, nanotechnology, and green chemistry. |
![]() ![]() You may like...
Advances in Pain Research: Mechanisms…
Bai Chuang Shyu, Makoto Tominaga
Hardcover
R4,619
Discovery Miles 46 190
Strategic Human Resource Management
Catherine Bailey, David Mankin, …
Paperback
![]() R729 Discovery Miles 7 290
|