![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry
This book serves as a self-contained reference source for engineers, materials scientists, and physicists with an interest in relaxation phenomena. It is made accessible to students and those new to the field by the inclusion of both elementary and advanced math techniques, as well as chapter opening summaries that cover relevant background information and enhance the book's pedagogical value. These summaries cover a wide gamut from elementary to advanced topics. The book is divided into three parts. The opening part, on mathematics, presents the core techniques and approaches. Parts II and III then apply the mathematics to electrical relaxation and structural relaxation, respectively. Part II discusses relaxation of polarization at both constant electric field (dielectric relaxation) and constant displacement (conductivity relaxation), topics that are not often discussed together. Part III primarily discusses enthalpy relaxation of amorphous materials within and below the glass transition temperature range. It takes a practical approach inspired by applied mathematics in which detailed rigorous proofs are eschewed in favor of describing practical tools that are useful to scientists and engineers. Derivations are however given when these provide physical insight and/or connections to other material. A self-contained reference on relaxation phenomena Details both the mathematical basis and applications For engineers, materials scientists, and physicists
This book presents and summarizes the new thoughts, new methods and new achievements that have emerged in the biotechnology of lignocellulose in recent years. It proposes new concepts including the primary refining, fractionation, multi-level utilization and selective structural separation of lignocellulose, etc. By approaching lignocellulose as a multi-level resource, biotechnology could have a significant effect on ecological agriculture, bio-energy, the chemical and paper making industries, etc., ultimately establishing distinctive eco-industrial parks for lignocellulose. Additionally, this book provides systematic research methods for the biotechnology of lignocellulose including investigation methods for the primary refining of lignocellulose, for microbial degradation and enzymatic hydrolysis, for cellulose fermentation and for lignocellulose conversion processes. It offers an excellent reference work and guide for scientists engaging in research on lignocellulose. Dr. Hongzhang Chen is a Professor at the Institute of Process Engineering of the Chinese Academy of Sciences, Beijing, China.
Glass Bubble technology has taken strong leaps in achieving high "strength to density ratio" which now enables their use in demanding polymer processing operations for various plastic and rubber parts and applications. Also, because light weighting and structural strengthening can be achieved with Glass Bubbles, this technology is of eminent importance for improving sustainability. For those reasons Glass Bubble technology is quickly penetrating various end-use applications in a wide range of industries such as Automotive, Aerospace, Building and Construction, Electronics, Medical, Consumer Goods, and the off-shore Oil industry. The sparse literature which exists about Glass Bubbles is in the form of papers and short chapters and covers rather theoretical aspects. Glass Bubbles for Plastics, Elastomers, and Adhesives for the first time gathers in one book all practical and theoretical aspects of Glass Bubble manufacturing, properties, processing, applications as well as regulatory, environmental, and health and safety aspects. The book enables the reader to evaluate the applicability of
Glass Bubbles to various applications involving polymers in
thermoplastics, elastomers, liquid thermosets and adhesives. It is
therefore an indispensible guide for material selection and
improving sustainability of products. Related data sets and case
studies complement the book - making it a reference book for
plastics processors, product designers and engineers working with
plastics and elastomers who want to improve functionality and
performance make their products lighter, longer lasting and
stronger, reduce amounts of material used and decrease costs. Formulating with Glass Bubbles for different end-use applications and how Glass Bubbles influence various properties (mechanical, structural, thermal and optical properties) in these applications One-stop reference book also covering regulatory and environmental aspects of this important additive
Today's consumers are looking for food products with health-promoting roles in addition to nutritional benefits. With current research showing that nutraceuticals and functional foods rich in specific bioactives may have chemopreventative effects, these products are increasingly popular. However, while much in the literature supports the health-promoting features of these foods, few texts focus on their bioactive agents and their mode of action in cancer signaling. Nutraceuticals and Cancer Signalling: Clinical Aspects and Mode of Action explains the link between nutraceuticals and cancer in terms of clinical trials and modes of action. This book gives an overview of common cancers and their mechanisms, and the most common functional foods and their bioactive components. Individual chapters focus on specific functional foods--including tomatoes, garlic, honey, tea, yoghurt, and many more--their prominent bioactive compounds, and their mode of action in cancer signaling and chemoprevention. Recent findings on cancer-prevention roles of different vitamins and minerals are also discussed. For food scientists, nutritionists, and pharmaceutical experts looking to understand how functional foods can play a role in fighting cancer, this text serves as a one-stop reference.
This highly informative and carefully presented book comprises select proceedings of Foundation for Molecular Modelling and Simulation (FOMMS 2018). The contents are written by invited speakers centered on the theme Innovation for Complex Systems. It showcases new developments and applications of computational quantum chemistry, statistical mechanics, molecular simulation and theory, and continuum and engineering process simulation. This volume will serve as a useful reference to researchers, academicians and practitioners alike.
Authored by many of the world's leading experts on high-Tc superconductivity, this volume presents a panorama of ongoing research in the field, as well as insights into related multifunctional materials. The contributions cover many different and complementary aspects of the physics and materials challenges, with an emphasis on superconducting materials that have emerged since the discovery of the cuprate superconductors, for example pnictides, MgB2, H2S and other hydrides. Special attention is also paid to interface superconductivity. In addition to superconductors, the volume also addresses materials related to polar and multifunctional ground states, another class of materials that owes its discovery to Prof. Muller's ground-breaking research on SrTiO3.
This book summarizes recent progress in cellulose chemistry. The last 10 years have witnessed important developments, because sustainability is a major concern. Biodegradable cellulose derivatives, in particular esters and ethers, are employed on a large scale. The recent developments in cellulose chemistry include unconventional methods for the synthesis of derivatives, introduction of novel solvents, e.g. ionic liquids, novel approaches to regioselective derivatization of cellulose, preparation of nano-particles and nano-composites for specific applications. These new developments are discussed comprehensively. This book is aimed at researchers and professionals working on cellulose and its derivatives. It fills an important gap in teaching, because most organic chemistry textbooks concentrate on the relatively simple chemistry of mono- and disaccharides. The chemistry and, more importantly, the applications of cellulose are only concisely mentioned.
The book focuses on the current research of the relation between protein phosphorylation and meat quality, reviews the influence mechanism of protein phosphorylation on meat quality, and summarizes the improvement of meat quality by regulating protein phosphorylation. It could help to clarify some dilemmas and encourage further research in this field, aiming for effective application of protein phosphorylation in meat quality in the near future. The book is written for researchers and graduate students in the field of meat science, food chemistry and molecular biology etc.
The volume presents existing and novel management approaches that are in use or have a great potential to be used to maintain the postharvest quality of fresh produce in terms of microbiological safety, nutrition, and sensory quality. In comparison to traditional synthetic chemicals, these eco-friendly molecules are equally effective with respect to slowing the physiological and biochemical changes in harvested produce. Application of terpenic compounds, phenolic compounds, salicylic acid, methyl jasmonates, hydrogen peroxide, ethanol, sulphur compounds, polyamines, plant growth regulators, active carbohydrates, ozone, hexanal and nitric oxide have been proven effective in minimizing storage disorders like chilling injury, scald, fungal diseases like stem-end rot, blue mould rot, green mould rot, anthracnose, regulation of ripening and senescence, etc. This book will be a standard reference work for the management of shelf life in the fresh produce industry.
Tribology is usually defined as "the science and technology of interacting surfaces in relative motion". It includes the research and application of principles of friction, wear, lubrication and design. Green tribology involves tribological aspects of environmental and biological impacts. This multidisciplinary field of science and technology is very important for the development of new products in mechanics, materials, chemistry, life sciences and by extension for all modern industry. The current volume aims to provide recent information on progress in green tribology. Chapter 1 provides information on tribological materials (an eco-sustainable perspective), while chapter 2 is dedicated to preparation and tribology performance of bio-based ceramic particles from rice waste and chapter 3 describes tribological behavior and tribochemistry of Ti3SiC2 in water and alcohols. Chapter 4 contains information on modelling and analysis of the oil-film pressure of a hydrodynamic journal bearing lubricated by nano based bio-lubricants using a D-optimal design. Finally, chapter 5 is dedicated to wear performance of oil palm seed fibre reinforced polyester composite aged in brake fluid solutions. The current volume can be used as a research book for final undergraduate in engineering courses or as a topic on green tribology at postgraduate level. This book can also serve as useful reference for academics, researchers, mechanical, materials, environmental and manufacturing engineers, professionals green tribology and related industries.
The book covers a wide range of materials used in biocomposite products, from biopolymer, wood fiber, wood, and non-wood species. It discusses the preparation of the material, processing and end applications, and also reviews wood quality improvement through different types of treatments.
This thesis describes novel strategies for the rational design of several cutting-edge high-efficiency photocatalysts, for applications such as water photooxidation, reduction, and overall splitting using a Z-Scheme system. As such, it focuses on efficient strategies for reducing energy loss by controlling charge transfer and separation, including novel faceted forms of silver phosphate for water photooxidation at record high rates, surface-basic highly polymerised graphitic carbon nitride for extremely efficient hydrogen production, and the first example of overall water splitting using a graphitic carbon nitride-based Z-Scheme system. Photocatalytic water splitting using solar irradiation can potentially offer a zero-carbon renewable energy source, yielding hydrogen and oxygen as clean products. These two 'solar' products can be used directly in fuel cells or combustion to provide clean electricity or other energy. Alternatively they can be utilised as separate entities for feedstock-based reactions, and are considered to be the two cornerstones of hydrogenation and oxidation reactions, including the production of methanol as a safe/portable fuel, or conventional catalytic reactions such as Fischer-Tropsch synthesis and ethylene oxide production. The main driving force behind the investigation is the fact that no photocatalyst system has yet reported combined high efficiency, high stability, and cost effectiveness; though cheap and stable, most suffer from low efficiency.
This book presents a comprehensive and up to date account of the chemotherapy of parasitic diseases, both human and veterinary. The book starts with an overview of parasitic diseases. The body of the book is divided into two parts: antihelminthic drugs, and antiprotozoal drugs. Both parts start with chapters highlighting the 'biochemical targets' available for chemotherapeutic interference. Individual chapters deal with one chemical class of compounds and describe their origin, structure-activity relationship, mode of action, and methods of synthesis and their status both in clinical and veterinary practice. The book will be useful to a wide spectrum of readers: students embarking on a research career in parasitic chemotherapy, clinicians (and veterinarians) and clinical pharmacologists desiring detailed information about the drugs currently in use, and pharmaceutical technologists wanting to update their knowledge of the methods of manufacture.
This thesis reports the latest developments in the direct amination of various C H bonds using an H Zn exchange/electrophilic amination strategy. McDonald and co-workers reveal this approach to be a rapid and powerful method for accessing a variety of functionalized amines. The material outlined in this book shows how McDonald achieved C H zincation using strong, non-nucleophilic zinc bases and subsequent electrophilic amination of the corresponding zinc carbanions with copper as a catalyst and O-benzoylhydroxylamines as the electrophilic nitrogen source. McDonald's findings are of relevance to medicinal chemistry, drug discovery and materials science. Her thesis is a source of inspiration for scientists entering the field and students beginning their PhD in a related area.
This book and its companion volumes contain plastics additives formulations based on information received from numerous industrial companies and other organizations. Each formulation is identified by a description of its end use.
This book explores new experimental phase diagrams of non-oxide ceramics, with a particular focus on the silicon nitride, silicon carbide and aluminum nitride, as well as the ultra-high temperature ceramic (UHTC) systems. It features more than 80 experimental phase diagrams of these non-oxide ceramics, including three phase diagrams of UHTC systems, constructed by the authors. Physical chemistry data covering the period since the 1970s, collected by the author Z.K.Huang, is presented in six tables in the appendixes. It also includes 301 figures involving about 150 material systems. Most of the phase diagrams have been selected from the ACerS-NIST database with copyright permission. The book methodically presents numerous diagrams previously scattered in various journals and conferences worldwide. Providing extensive experimental data, it is a valuable reference resource on ceramics development and design for academic researchers, R&D engineers and graduate students.
Handbook of Surface Improvement and Modification contains information on several groups of additives and the modification processes which determine the surface properties of many materials. These additives can modify or improve scratch and mar resistance, improve gloss or flatten the surface, increase or decrease tack and inhibit staining. The mechanisms of damage, protection and property improvements are also discussed, making this an essential handbook for engineers, researchers and technicians interested in using additives to modify and improve the surface properties of materials. A companion book entitled Databook of Surface Modification Additives has also been published. It contains information and data on the additives commercially available to improve materials by the above-listed modifications. Both books do not repeat information. In this book, the focus is on the methods and mechanisms which are known to be responsible for the enhancement of material properties with the use of additives.
As a result of knowledge exchange between the academic and industrial worlds, this book analyzes the process industries impacted by the digital revolution that accompanies the ongoing energy and environmental transitions. Process Industries 2 first discusses bio-industries and analyzes the development of products of microbial origin. It then studies all the stages of industrialization that facilitate the progress from research to the production of a finished product, as well as industrial management techniques. Using concrete examples, this book presents the instruments of the digital revolution (artificial intelligence, virtual reality, augmented reality, the Internet of Things, digital twins), while analyzing their impact on the supply chain and operators. Boxes within the book, written by recognized specialists, invite both students and professionals, who are faced with a changing world, to reflect on the industry and the world of tomorrow.
This book examines the fundamental concepts of multimodality small-animal molecular imaging technologies and their numerous applications in biomedical research. Driven primarily by the widespread availability of various small-animal models of human diseases replicating accurately biological and biochemical processes in vivo, this is a relatively new yet rapidly expanding field that has excellent potential to become a powerful tool in biomedical research and drug development. In addition to being a powerful clinical tool, a number of imaging modalities including but not limited to CT, MRI, SPECT and PET are also used in small laboratory animal research to visualize and track certain molecular processes associated with diseases such as cancer, heart disease and neurological disorders in living small animal models of disease. In vivo small-animal imaging is playing a pivotal role in the scientific research paradigm enabling to understand human molecular biology and pathophysiology using, for instance, genetically engineered mice with spontaneous diseases that closely mimic human diseases.
A comprehensive reference for the poultry industry--"Volume 2" describes poultry processing from raw meat to final retail products With an unparalleled level of coverage, the "Handbook of Poultry Science and Technology" provides an up-to-date and comprehensive reference on poultry processing. "Volume 2: Secondary Processing" covers processing poultry from raw meat to uncooked, cooked or semi-cooked retail products. It includes the scientific, technical, and engineering principles of poultry processing, methods and product categories, product manufacturing and attributes, and sanitation and safety. "Volume 2: Secondary Processing" is divided into seven parts: Secondary processing of poultry products--an overviewMethods in processing poultry products--includes emulsions and gelations; breading and battering; mechanical deboning; marination, cooking, and curing; and non-meat ingredientsProduct manufacturing--includes canned poultry meat, turkey bacon and sausage, breaded product (nuggets), paste product (pate), poultry ham, luncheon meat, processed functional egg products, and special dietary products for the elderly, the ill, children, and infantsProduct quality and sensory attributes--includes texture and tenderness, protein and poultry meat quality, flavors, color, handling refrigerated poultry, and moreEngineering principles, operations, and equipment--includes processing equipment, thermal processing, packaging, and moreContaminants, pathogens, analysis, and quality assurance--includes microbial ecology and spoilage in poultry and poultry products; campylobacter; microbiology of ready-to-eat poultry products; and chemical and microbial analysisSafety systems in the United States--includes U.S. sanitation requirements, HACCP, U.S. enforcement tools and mechanisms |
![]() ![]() You may like...
When Love Kills - The Tragic Tale Of AKA…
Melinda Ferguson
Paperback
![]()
Adaptation and Human Behavior - An…
Lee Cronk, Napoleon A Chagnon, …
Hardcover
R4,586
Discovery Miles 45 860
|