![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Technology: general issues > Technical design > Computer aided design (CAD)
For the past decade or so, Computational Intelligence (CI) has been an - tremely "hot" topic amongst researchers working in the ?elds of biomedicine and bioinformatics. There are many successful applications of CI in such areas ascomputationalgenomics, predictionofgeneexpression, proteinstructure, and protein-protein interactions, modeling of evolution, or neuronal systems mod- ing and analysis. However, there still are many problems in biomedicine and bioinformatics that are in desperate need of advanced and e?cient compu- tional methodologies to deal with tremendous amounts of data so prevalent in those kinds of researchpursuits. Unfortunately, scientists in both these ?elds are very often unaware of the abundance of computational techniques that could be put to use to help them analyze and understand the data underlying their research inquiries. On the other hand, computational intelligence practitioners are often unfamiliar with the particular problems that their algorithms could be successfully applied for. The separation between the two worlds is partially caused by the use of di?erent languages in these two spheres of science, but also by a relatively small number of publications devoted solely to the purpose of facilitating the exchange of new computational algorithms and methodologies on one hand, and the needs of the realms of biomedicine and bioinformatics on the other. Inordertohelp?llthegapbetweenthescientistsonbothsidesofthisspectrum, wehavesolicitedcontributionsfromresearchersactivelyapplyingcomputational intelligencetechniquestoimportantproblemsinbiomedicineandbioinformatics. The purpose of this book is to provide an overview of powerful state-of-the-art methodologiesthatarecurrentlyutilizedforbiomedicine-and/orbioinformati- orientedapplications, sothatresearchersworkinginthose?eldscouldlearnofnew methodstohelpthemtackletheirproblems. Ontheotherhand, wealsohopethat the CI community will ?nd this book useful by discovering a new and intriguing area of applications.
Computer Aided Tolerancing (CAT) is an important topic in any field of design and production where parts move relative to one another and/or are assembled together. Geometric variations from specified dimensions and form always occur when parts are manufactured. Improvements in production systems can cause the amounts of the variations to become smaller, but their presence does not disappear. To shorten the time from concept to market of a product, it has been increasingly important to take clearances and the tolerancing of manufacturing variations into consideration right from the beginning, at the stage of design. Hence, geometric models are defined that represent both the complete array of geometric variations possible during manufacture and also the influence of geometry on the function of individual parts and on assemblies of them. The contents of this book originate from a collection of selected papers presented at the 9th CIRP International Seminar on CAT that was held from April 10-12, 2005 at Arizona State University, USA. The CIRP (College International pour la Recherche en Production or International Institution for Production Engineering Research) plans this seminar every two years, and the book is one in a series of Proceedings on CAT. The book is organized into seven parts: Models for Tolerance Representation and Specification, Tolerance Analysis, Tolerance Synthesis, Computational Metrology and Verification, Tolerances in Manufacturing, Applications to Machinery, and Incorporating Elasticity in Tolerance Models."
This book reviews the theoretical fundamentals of grey-box identification and puts the spotlight on MoCaVa, a MATLAB-compatible software tool, for facilitating the procedure of effective grey-box identification. It demonstrates the application of MoCaVa using two case studies drawn from the paper and steel industries. In addition, the book answers common questions which will help in building accurate models for systems with unknown inputs.
MARTENS Bob and BROWN Andre Co-conference Chairs, CAAD Futures 2005 Computer Aided Architectural Design is a particularly dynamic field that is developing through the actions of architects, software developers, researchers, technologists, users, and society alike. CAAD tools in the architectural office are no longer prominent outsiders, but have become ubiquitous tools for all professionals in the design disciplines. At the same time, techniques and tools from other fields and uses, are entering the field of architectural design. This is exemplified by the tendency to speak of Information and Communication Technology as a field in which CAAD is embedded. Exciting new combinations are possible for those, who are firmly grounded in an understanding of architectural design and who have a clear vision of the potential use of ICT. CAAD Futures 2005 called for innovative and original papers in the field of Computer Aided Architectural Design, that present rigorous, high-quality research and development work. Papers should point towards the future, but be based on a thorough understanding of the past and present.
Model Predictive Control System Design and Implementation Using MATLAB(r) proposes methods for design and implementation of MPC systems using basis functions that confer the following advantages: - continuous- and discrete-time MPC problems solved in similar design frameworks; - a parsimonious parametric representation of the control trajectory gives rise to computationally efficient algorithms and better on-line performance; and - a more general discrete-time representation of MPC design that becomes identical to the traditional approach for an appropriate choice of parameters. After the theoretical presentation, coverage is given to three industrial applications. The subject of quadratic programming, often associated with the core optimization algorithms of MPC is also introduced and explained. The technical contents of this book is mainly based on advances in MPC using state-space models and basis functions. This volume includes numerous analytical examples and problems and MATLAB(r) programs and exercises.
This book introduces all the relevant information required to understand and put Model Driven Architecture (MDA) into industrial practice. It clearly explains which conceptual primitives should be present in a system specification, how to use UML to properly represent this subset of basic conceptual constructs, how to identify just those diagrams and modeling constructs that are actually required to create a meaningful conceptual schema, and how to accomplish the transformation process between the problem space and the solution space. The approach is fully supported by commercially available tools.
As future generation information technology (FGIT) becomes specialized and fr- mented, it is easy to lose sight that many topics in FGIT have common threads and, because of this, advances in one discipline may be transmitted to others. Presentation of recent results obtained in different disciplines encourages this interchange for the advancement of FGIT as a whole. Of particular interest are hybrid solutions that c- bine ideas taken from multiple disciplines in order to achieve something more signi- cant than the sum of the individual parts. Through such hybrid philosophy, a new principle can be discovered, which has the propensity to propagate throughout mul- faceted disciplines. FGIT 2009 was the first mega-conference that attempted to follow the above idea of hybridization in FGIT in a form of multiple events related to particular disciplines of IT, conducted by separate scientific committees, but coordinated in order to expose the most important contributions. It included the following international conferences: Advanced Software Engineering and Its Applications (ASEA), Bio-Science and Bio-Technology (BSBT), Control and Automation (CA), Database Theory and Application (DTA), D- aster Recovery and Business Continuity (DRBC; published independently), Future G- eration Communication and Networking (FGCN) that was combined with Advanced Communication and Networking (ACN), Grid and Distributed Computing (GDC), M- timedia, Computer Graphics and Broadcasting (MulGraB), Security Technology (SecTech), Signal Processing, Image Processing and Pattern Recognition (SIP), and- and e-Service, Science and Technology (UNESST).
This book constitutes the thoroughly refereed post-conference proceedings of the 7th International Conference on Numerical Methods and Applications, NMA 2010, held in Borovets, Bulgaria, in August 2010. The 60 revised full papers presented together with 3 invited papers were carefully reviewed and selected from numerous submissions for inclusion in this book. The papers are organized in topical sections on Monte Carlo and quasi-Monte Carlo methods, environmental modeling, grid computing and applications, metaheuristics for optimization problems, and modeling and simulation of electrochemical processes.
This book is the most comprehensive book you will find on AutoCAD 2019 - 2D Drafting. Covering all of the 2D concepts, it uses both metric and imperial units to illustrate the myriad drawing and editing tools for this popular application. Use the companion disc to set up drawing exercises and projects and see all of the book's figures in color. AutoCAD 2019 Beginning and Intermediate includes over 100 exercises or "mini-workshops," that complete small projects from concept through actual plotting. Solving all of the workshops will simulate the creation of three projects (architectural and mechanical) from beginning to end, without overlooking any of the basic commands and functions in AutoCAD 2019.
The concept of CAST as Computer Aided Systems Theory was introduced by F. Pichler in the late 1980s to refer to computer theoretical and practical developments as tools for solving problems in system science. It was thought of as the third component (the other two being CAD and CAM) required to complete the path from computer and systems sciences to practical developments in science and engineering. Franz Pichler, of the University of Linz, organized the first CAST workshop in April 1988, which demonstrated the acceptance of the concepts by the scientific and technical community. Next, the University of Las Palmas de Gran Canaria joined the University of Linz to organize the first international meeting on CAST (Las Palmas, February 1989) under the name EUROCAST'89. This proved to be a very successful gathering of systems theorists, computer scientists and engineers from most European countries, North America and Japan. It was agreed that EUROCAST international conferences would be organized every two years, alternating between Las Palmas de Gran Canaria and a continental European location. From 2001 the conference has been held exclusively in Las Palmas. Thus, successive EUROCAST meetings took place in Krems (1991), Las Palmas (1993), In- bruck (1995), Las Palmas (1997), Vienna (1999), Las Palmas (2001), Las Palmas (2003) Las Palmas (2005) and Las Palmas (2007), in addition to an extra-European CAST c- ference in Ottawa in 1994.
Assertion-based IP is much more than a comprehensive set of related assertions. It is a full-fledged reusable and configurable transaction-level verification component, which is used to detect both interesting and incorrect behaviors. Upon detecting interesting or incorrect behavior, the assertion-based IP alerts other verification components within a simulation environment, which are responsible for taking appropriate action. The focus of this book is to bring the assertion discussion up to a higher level and introduce a process for creating effective, reusable, assertion-based IP, which easily integrates with the user s existing verification environment, in other words the testbench infrastructure. The guiding principles promoted in this book when creating an assertion-based IP monitor are:
A unique feature of this book is the fully worked out, detailed examples. The concepts presented in the book are drawn from the authors experience developing assertion-based IP, as well as general assertion-based techniques. Creating Assertion-Based IP is an important resource for design and verification engineers. From the Foreword: Creating Assertion-Based IP " reduces to process the creation of
one of the most valuable kinds of VIP: assertion-based VIP This
book will serve as a valuable reference for years to come."
Statistical timing analysis is an area of growing importance in nanometer te- nologies' as the uncertainties associated with process and environmental var- tions increase' and this chapter has captured some of the major efforts in this area. This remains a very active field of research' and there is likely to be a great deal of new research to be found in conferences and journals after this book is published. In addition to the statistical analysis of combinational circuits' a good deal of work has been carried out in analyzing the effect of variations on clock skew. Although we will not treat this subject in this book' the reader is referred to [LNPS00' HN01' JH01' ABZ03a] for details. 7 TIMING ANALYSIS FOR SEQUENTIAL CIRCUITS 7.1 INTRODUCTION A general sequential circuit is a network of computational nodes (gates) and memory elements (registers). The computational nodes may be conceptualized as being clustered together in an acyclic network of gates that forms a c- binational logic circuit. A cyclic path in the direction of signal propagation 1 is permitted in the sequential circuit only if it contains at least one register . In general, it is possible to represent any sequential circuit in terms of the schematic shown in Figure 7.1, which has I inputs, O outputs and M registers. The registers outputs feed into the combinational logic which, in turn, feeds the register inputs. Thus, the combinational logic has I + M inputs and O + M outputs.
Sigma delta modulation has become a very useful and widely applied technique for high performance Analog-to-Digital (A/D) conversion of narrow band signals. Through the use of oversampling and negative feedback, the quantization errors of a coarse quantizer are suppressed in a narrow signal band in the output of the modulator. Bandpass sigma delta modulation is well suited for A/D conversion of narrow band signals modulated on a carrier, as occurs in communication systems such as AM/FM receivers and mobile phones. Due to the nonlinearity of the quantizer in the feedback loop, a sigma delta modulator may exhibit input signal dependent stability properties. The same combination of the nonlinearity and the feedback loop complicates the stability analysis. In Bandpass Sigma Delta Modulators, the describing function method is used to analyze the stability of the sigma delta modulator. The linear gain model commonly used for the quantizer fails to predict small signal stability properties and idle patterns accurately. In Bandpass Sigma Delta Modulators an improved model for the quantizer is introduced, extending the linear gain model with a phase shift. Analysis shows that the phase shift of a sampled quantizer is in fact a phase uncertainty. Stability analysis of sigma delta modulators using the extended model allows accurate prediction of idle patterns and calculation of small-signal stability boundaries for loop filter parameters. A simplified rule of thumb is derived and applied to bandpass sigma delta modulators. The stability properties have a considerable impact on the design of single-loop, one-bit, high-order continuous-time bandpass sigma delta modulators. The continuous-time bandpass loop filter structure should have sufficient degrees of freedom to implement the desired (small-signal stable) sigma delta modulator behavior. Bandpass Sigma Delta Modulators will be of interest to practicing engineers and researchers in the areas of mixed-signal and analog integrated circuit design.
Hierarchical design methods were originally introduced for the design of digital ICs, and they appeared to provide for significant advances in design productivity, Time-to-Market, and first-time right design. These concepts have gained increasing importance in the semiconductor industry in recent years. In the course of time, the supportive quality of hierarchical methods and their advantages were confirmed. System Level Hardware/Software Co-design: An Industrial Approach demonstrates the applicability of hierarchical methods to hardware / software codesign, and mixed analogue / digital design following a similar approach. Hierarchical design methods provide for high levels of design support, both in a qualitative and a quantitative sense. In the qualitative sense, the presented methods support all phases in the product life cycle of electronic products, ranging from requirements analysis to application support. Hierarchical methods furthermore allow for efficient digital hardware design, hardware / software codesign, and mixed analogue / digital design, on the basis of commercially available formalisms and design tools. In the quantitative sense, hierarchical methods have prompted a substantial increase in design productivity. System Level Hardware/Software Co-design: An Industrial Approach reports on a six year study during which time the number of square millimeters of normalized complexity an individual designer contributed every week rose by more than a factor of five. Hierarchical methods therefore enabled designers to keep track of the ever increasing design complexity, while effectively reducing the number of design iterations in the form of redesigns. System Level Hardware/Software Co-design: An Industrial Approach is the first book to provide a comprehensive, coherent system design methodology that has been proven to increase productivity in industrial practice. The book will be of interest to all managers, designers and researchers working in the semiconductor industry.
Model Based Fuzzy Control uses a given conventional or fuzzy open loop model of the plant under control to derive the set of fuzzy rules for the fuzzy controller. Of central interest are the stability, performance, and robustness of the resulting closed loop system. The major objective of model based fuzzy control is to use the full range of linear and nonlinear design and analysis methods to design such fuzzy controllers with better stability, performance, and robustness properties than non-fuzzy controllers designed using the same techniques. This objective has already been achieved for fuzzy sliding mode controllers and fuzzy gain schedulers - the main topics of this book. The primary aim of the book is to serve as a guide for the practitioner and to provide introductory material for courses in control theory.
Computer-Aided Design of User Interfaces VI gathers the latest experience of experts, research teams and leading organisations involved in computer-aided design of user interactive applications. This area investigates how it is desirable and possible to support, to facilitate and to speed up the development life cycle of any interactive system: requirements engineering, early-stage design, detailed design, deelopment, deployment, evaluation, and maintenance. In particular, it stresses how the design activity could be better understood for different types of advanced interactive ubiquitous computing, and multi-device environments.
Mass Customization and Footwear: Myth, Salvation or Reality is the only book dedicated to the application of mass customization in a particular industry. By showing examples of how a "mature" manufacturing sector like shoe making can be thoroughly renovated in business and mentality by applying this paradigm; Mass Customization and Footwear: Myth, Salvation or Reality will be bought by practitioners in the footwear sector and postgraduates, researchers and lecturers in the area of mass customization.
A look at important new tools and algorithms for future product modeling systems, based on a seminar at the International Conference and Research Center for Computer Science, Schloss Dagstuhl, Germany, presented by internationally recognised experts in CAD technology.
"As chip size and complexity continues to grow exponentially, the
challenges of functional verification are becoming a critical issue
in the electronics industry. It is now commonly heard that logical
errors missed during functional verification are the most common
cause of chip re-spins, and that the costs associated with
functional verification are now outweighing the costs of chip
design. To cope with these challenges engineers are increasingly
relying on new design and verification methodologies and languages.
Transaction-based design and verification, constrained random
stimulus generation, functional coverage analysis, and
assertion-based verification are all techniques that advanced
design and verification teams routinely use today. Engineers are
also increasingly turning to design and verification models based
on C/C++ and SystemC in order to build more abstract, higher
performance hardware and software models and to escape the
limitations of RTL HDLs. This new book, Advanced Verification
Techniques, provides specific guidance for these advanced
verification techniques. The book includes realistic examples and
shows how SystemC and SCV can be applied to a variety of advanced
design and verification tasks."
Our society is faced with an increasing dependence on computing
systems, not only in high tech consumer applications but also in
areas (e.g., air and railway traffic control, nuclear plant
control, aircraft and car control) where a failure can be critical
for the safety of human beings. Unfortunately, it is accepted that
large digital systems cannot be fault-free. Some faults may be
attributed to inaccuracy during the development, while others can
come from external causes such as environmental stress. Radiations,
electromagnetic interference and power glitches are some of the
most common causes of transient faults.
Introduction to Hardware-Software Co-Design presents a number of issues of fundamental importance for the design of integrated hardware software products such as embedded, communication, and multimedia systems. This book is a comprehensive introduction to the fundamentals of hardware/software co-design. Co-design is still a new field but one which has substantially matured over the past few years. This book, written by leading international experts, covers all the major topics including: fundamental issues in co-design; hardware/software co-synthesis algorithms; prototyping and emulation; target architectures; compiler techniques; specification and verification; system-level specification. Special chapters describe in detail several leading-edge co-design systems including Cosyma, LYCOS, and Cosmos. Introduction to Hardware-Software Co-Design contains sufficient material for use by teachers and students in an advanced course of hardware/software co-design. It also contains extensive explanation of the fundamental concepts of the subject and the necessary background to bring practitioners up-to-date on this increasingly important topic.
This book contains the extended and revised editions of all the talks of the ninth AACD Workshop held in Hotel Bachmair, April 11 - 13 2000 in Rottach-Egem, Germany. The local organization was managed by Rudolf Koch of Infineon Technologies AG, Munich, Germany. The program consisted of six tutorials per day during three days. Experts in the field presented these tutorials and state of the art information is communicated. The audience at the end of the workshop selects program topics for the following workshop. The program committee, consisting of Johan Huijsing of Delft University of Technology, Willy Sansen of Katholieke Universiteit Leuven and Rudy van de Plassche of Broadcom Netherlands BV Bunnik elaborates the selected topics into a three-day program and selects experts in the field for presentation. Each AACD Workshop has given rise to publication of a book by Kluwer entitled "Analog Circuit Design." A series of nine books in a row provides valuable information and good overviews of all analog circuit techniques concerning design, CAD, simulation and device modeling. These books can be seen as a reference to those people involved in analog and mixed signal design. The aim of the workshop is to brainstorm on new and valuable design ideas in the area of analog circuit design. It is the hope of the program committee that this ninth book continues the tradition of emerging contributions to the design of analog and mixed signal systems in Europe and the rest of the world.
Communication between engineers, their managers, suppliers and customers relies on the existence of a common understanding for the meaning of terms. While this is not normally a problem, it has proved to be a significant roadblock in the EDA industry where terms are created as required by any number of people, multiple terms are coined for the same thing, or even worse, the same term is used for many different things. This taxonomy identifies all of the significant terms used by an industry and provides a structural framework in which those terms can be defined and their relationship to other terms identified. The origins of this work go back to 1995 with a government-sponsored program called RASSP. At the termination of their work, VSIA picked up their work and developed it further. Three new taxonomies were introduced by VSIA for additional facets of the system design and development process. Since role of VSIA has now changed so that it no longer maintains these taxonomies, the baton is being passed on again through a group of interested people and manifested in this key reference work.
In Thermal and Power Management of Integrated Circuits, power and thermal management issues in integrated circuits during normal operating conditions and stress operating conditions are addressed. Thermal management in VLSI circuits is becoming an integral part of the design, test, and manufacturing. Proper thermal management is the key to achieve high performance, quality and reliability. Performance and reliability of integrated circuits are strong functions of the junction temperature. A small increase in junction temperature may result in significant reduction in the device lifetime. This book reviews the significance of the junction temperature as a reliability measure under nominal and burn-in conditions. The latest research in the area of electro-thermal modeling of integrated circuits will also be presented. Recent models and associated CAD tools are covered and various techniques at the circuit and system levels are reviewed. Subsequently, the authors provide an insight into the concept of thermal runaway and how it may best be avoided. A section on low temperature operation of integrated circuits concludes the book.
Networks on Chip presents a variety of topics, problems and approaches with the common theme to systematically organize the on-chip communication in the form of a regular, shared communication network on chip, an NoC for short. As the number of processor cores and IP blocks integrated on a single chip is steadily growing, a systematic approach to design the communication infrastructure becomes necessary. Different variants of packed switched on-chip networks have been proposed by several groups during the past two years. This book summarizes the state of the art of these efforts and discusses the major issues from the physical integration to architecture to operating systems and application interfaces. It also provides a guideline and vision about the direction this field is moving to. Moreover, the book outlines the consequences of adopting design platforms based on packet switched network. The consequences may in fact be far reaching because many of the topics of distributed systems, distributed real-time systems, fault tolerant systems, parallel computer architecture, parallel programming as well as traditional system-on-chip issues will appear relevant but within the constraints of a single chip VLSI implementation. The book is organized in three parts. The first deals with system design and methodology issues. The second presents problems and solutions concerning the hardware and the basic communication infrastructure. Finally, the third part covers operating system, embedded software and application. However, communication from the physical to the application level is a central theme throughout the book. The book serves as an excellent reference source and may be used as a text for advanced courses on the subject. |
You may like...
AutoCAD Electrical 2023 Black Book…
Gaurav Verma, Matt Weber
Hardcover
R1,464
Discovery Miles 14 640
Autodesk Revit 2023 Black Book (Colored)
Gaurav Verma, Matt Weber
Hardcover
R1,905
Discovery Miles 19 050
Up and Running with AutoCAD 2022 - 2D…
Elliot J. Gindis, Robert C. Kaebisch
Paperback
R2,087
Discovery Miles 20 870
Mastercam 2023 for SolidWorks Black Book…
Gaurav Verma, Matt Weber
Hardcover
R2,311
Discovery Miles 23 110
Recent Trends in Computer-aided…
Saptarshi Chatterjee, Debangshu Dey, …
Paperback
R2,570
Discovery Miles 25 700
|