![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of fluids > General
This volume presents state-of-the-art of reviews in the field of multiphase flow. In focusses on nonlinear aspects of multiphase flow networks as well as visualization experiments. The first chapter presents nonlinear aspects or deterministic chaos issues in the systems of multi-phase reactors.The second chapter reviews two-phase flow dynamics in combination with complex network theory. The third chapter discusses evaporation mechanism in the wick of copper heat pipes. The last chapter investigates numerically the flow dynamics and heat and mass transfer in the laminar and turbulent boundary layer on the flat vertical plate."
The discontinuous finite element method (also known as the discontinuous Galerkin method) embodies the advantages of both finite element and finite difference methods. It can be used in convection-dominant applications while maintaining geometric flexibility and higher local approximations throught the use of higher-order elements. Element-by element connection propagates the effect of boundary conditions and the local formulation obviates the need for global matrix assembly. All of this adds up to a method which is not unduly memory-intensive and uniquely useful for working with computational dynamics, heat transfer and fluid flow calculations. Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer offers its readers a systematic and practical introduction to the discontinuous finite element method. It moves from a brief review of the fundamental laws and equations governing thermal and fluid systems, through a discussion of different approaches to the formulation of discontinuous finite element solutions for boundary and initial value problems, to their applicaton in a variety of thermal-system and fluid-related problems, including:
Mesh generation and adaptivity, parellelization algorithms and a priori and a posteriori error analysis are also introduced andexplained, rounding out a comprehensive review of the subject. Each chapter features worked examples and exercises illustrating situations ranging from simple benchmarks to practical engineering questions. This textbook is written to form the foundations of senior undergraduate and graduate learning and also provides scientists, applied mathematicians and research engineers with a thorough treatment of basic concepts, specific techniques and methods for the use of discontinuous Galerkin methods in computational fluid dynamics and heat transfer applications.
This volume contains 27 contributions to the Forth Russian-German Advanced Research Workshop on Computational Science and High Performance Computing presented in October 2009 in Freiburg, Germany. The workshop was organized jointly by the High Performance Computing Center Stuttgart (HLRS), the Institute of Computational Technologies of the Siberian Branch of the Russian Academy of Sciences (ICT SB RAS) and the Section of Applied Mathematics of the University of Freiburg (IAM Freiburg) The contributions range from computer science, mathematics and high performance computing to applications in mechanical and aerospace engineering. They show a wealth of theoretical work and simulation experience with a potential of bringing together theoretical mathematical modelling and usage of high performance computing systems presenting the state of the art of computational technologies.
Microfluidics for Biological Applications provides researchers and scientists in the biotechnology, pharmaceutical, and life science industries with an introduction to the basics of microfluidics and also discusses how to link these technologies to various biological applications at the industrial and academic level. Readers will gain insight into a wide variety of biological applications for microfluidics. The material presented here is divided into four parts, Part I gives perspective on the history and development of microfluidic technologies, Part II presents overviews on how microfluidic systems have been used to study and manipulate specific classes of components, Part III focuses on specific biological applications of microfluidics: biodefense, diagnostics, high throughput screening, and tissue engineering and finally Part IV concludes with a discussion of emerging trends in the microfluidics field and the current challenges to the growth and continuing success of the field.
This volume presents applications of the Pi-Theorem to fluid mechanics and heat and mass transfer. The Pi-theorem yields a physical motivation behind many flow processes and therefore it constitutes a valuable tool for the intelligent planning of experiments in fluids. After a short introduction to the underlying differential equations and their treatments, the author presents many novel approaches how to use the Pi-theorem to understand fluid mechanical issues. The book is a great value to the fluid mechanics community, as it cuts across many subdisciplines of experimental fluid mechanics.
This volume offers of the EU-funded 5th Framework project, FLOMANIA (Flow Physics Modelling - An Integrated Approach). The book presents an introduction to the project, exhibits partners' methods and approaches, and provides comprehensive reports of all applications treated in the project. A complete chapter is devoted to a description of turbulence models used by the partners together with a section on lessons learned, accompanied by a comprehensive list of references.
This volume collects the edited and reviewed contributions presented in the 5th iTi Conference in Bertinoro covering fundamental aspects in turbulent flows. In the spirit of the iTi initiative, the volume is produced after the conference so that the authors had the possibility to incorporate comments and discussions raised during the meeting. Turbulence presents a large number of aspects and problems, which are still unsolved and which challenge research communities in engineering and physical sciences both in basic and applied research. The book presents recent advances in theory related to new statistical approaches, effect of non-linearities and presence of symmetries. This edition presents new contributions related to the physics and control of laminar-turbulent transition in wall-bounded flows, which may have a significant impact on drag reduction applications. Turbulent boundary layers, at increasing Reynolds number, are the main subject of both computational and experimental long research programs aimed at improving our knowledge on scaling, energy distribution at different scales, structure eduction, roughness effects to name only a few. Like previous editions several numerical and experimental analysis of complex flows, mostly related to applications, are presented. The structure of the present book is as such that contributions have been bundled according to covering topics i.e. I Theory, II Stability, III Wall bounded flows, IV, Complex flows, V Acoustic, VI Numerical methods. The volume is dedicated to the memory of Prof. Rudolf Friedrich who prematurely died in Munster/Germany on the 16th of August 2012. In his honor the conference has started with a special session dedicated to his work. "
With applications to climate, technology, and industry, the modeling and numerical simulation of turbulent flows are rich with history and modern relevance. The complexity of the problems that arise in the study of turbulence requires tools from various scientific disciplines, including mathematics, physics, engineering and computer science. Authored by two experts in the area with a long history of collaboration, this monograph provides a current, detailed look at several turbulence models from both the theoretical and numerical perspectives. The k-epsilon, large-eddy simulation and other models are rigorously derived and their performance is analyzed using benchmark simulations for real-world turbulent flows. "Mathematical and Numerical Foundations of Turbulence Models and Applications" is an ideal reference for students in applied mathematics and engineering, as well as researchers in mathematical and numerical fluid dynamics. It is also a valuable resource for advanced graduate students in fluid dynamics, engineers, physical oceanographers, meteorologists and climatologists.
This book explores the dynamics and vibration properties of gearboxes, with a focus on geared rotor systems. It discusses mechanical theories, finite-element based simulations, experimental measurements and vibration signal processing techniques. It introduces the vibration-resonance calculation method for the geared rotor system in wind turbines and load sharing of the planetary gear train, and offers a method for calculating the vibrations of geared rotor systems under either internal excitations from gear sets or external loads transferred from wind loads. It also defines and elaborates on parameter optimization for planetary gear systems based on the torsional dynamics of wind-turbine geared rotor systems. Moreover, it describes experimental measurements of vibrations on the wind-turbine gearbox performed on the test rig and on site, and analyzes the vibration signals of different testing points, showing them in both time and frequency domains. Lastly, it lists the gear coupling frequencies and fault characteristic frequencies from the vibrations of the gearbox housing. The technologies and results presented are valuable resources for use in dynamic design, vibration prediction and analysis of gearboxes and geared rotor systems in wind turbines as well as many other machines.
The monograph is the first book that reviews a variety of problems in different fluid mechanics disciplines that led to the concept of canopy, or penetrable roughness. Despite their diversity, many flows may be theoretically united by means of introducing distributed sinks and/or sources of momentum and heat and mass. Terrestrial vegetation, historically the first example of canopies, creates specific features of turbulence. Aquatic canopies exhibit a range of behaviour depending on the depth of submergence, geometrical forms of the obstacles and the patterns of their relative locations. These and other flows in engineering and environmental situations over surfaces with many obstacles are reviewed in terms of general concepts of fluid mechanics. They have been subject to examination by field-scale and laboratory experiments, and have been modelled and simulated using a variety of computational techniques. Distinct regions of the flows are identified. Application of the flow modelling is also relevant to predicting the dispersion of pollutants in these complex flows, particularly for releases in street canyons and fire propagation. Written by world-recognized experts, the book is of interest to researchers and students in general fluid mechanics and environmental physics, in hydraulics and meteorology, as well as in environment protection.
The term transport phenomena is used to describe processes in which mass, momentum, energy and entropy move about in matter. Advances in Transport Phenomena provide state-of-the-art expositions of major advances by theoretical, numerical and experimental studies from a molecular, microscopic, mesoscopic, macroscopic or megascopic point of view across the spectrum of transport phenomena, from scientific enquiries to practical applications. The annual review series intends to fill the information gap between regularly published journals and university-level textbooks by providing in-depth review articles over a broader scope than in journals. The authoritative articles, contributed by internationally-leading scientists and practitioners, establish the state of the art, disseminate the latest research discoveries, serve as a central source of reference for fundamentals and applications of transport phenomena, and provide potential textbooks to senior undergraduate and graduate students. This review book provides state-of-the-art expositions of major advances by theoretical, numerical and experimental studies from a molecular, microscopic, mesoscopic, macroscopic or megascopic point of view across the spectrum of transport phenomena, from scientific enquiries to practical applications. This new volume of the annual review "Advances in Transport Phenomena" series provides in-depth review articles covering the fields of mass transfer, fluid mechanics, heat transfer and thermodynamics. This review book provides state-of-the-art expositions of major advances by theoretical, numerical and experimental studies from a molecular, microscopic, mesoscopic, macroscopic or megascopic point of view across the spectrum of transport phenomena, from scientific enquiries to practical applications. This new volume of the annual review "Advances in Transport Phenomena" series provides in-depth review articles covering the fields of mass transfer, fluid mechanics, heat transfer and thermodynamics.
This work represents one of the first comprehensive attempts to seamlessly integrate two highly active interdisciplinary domains in soft matter science - microfluidics and liquid crystals (LCs). Motivated by the lack of fundamental experiments, Dr. Sengupta initiated systematic investigation of LC flows at micro scales, gaining new insights that are also suggestive of novel applications. By tailoring the surface anchoring of the LC molecules and the channel dimensions, different topological constraints were controllably introduced within the microfluidic devices. These topological constraints were further manipulated using a flow field, paving the way for Topological Microfluidics. Harnessing topology on a microfluidic platform, as described in this thesis, opens up capabilities beyond the conventional viscous-dominated microfluidics, promising potential applications in targeted delivery and sorting systems, self-assembled motifs, and novel metamaterial fabrications.
Preface "In aircraft design, efficiency is determined by the ability to accurately and rel- bly predict the occurrence of, and to model the development of, turbulent flows. Hence, the main objective in industrial computational fluid dynamics (CFD) is to increase the capabilities for an improved predictive accuracy for both complex flows and complex geometries". This text part taken from Haase et al (2006), - scribing the results of the DESider predecessor project "FLOMANIA" is still - and will be in future valid. With an ever-increasing demand for faster, more reliable and cleaner aircraft, flight envelopes are necessarily shifted into areas of the flow regimes exhibiting highly unsteady and, for military aircraft, unstable flow behaviour. This undou- edly poses major new challenges in CFD; generally stated as an increased pred- tive accuracy whist retaining "affordable" computation times. Together with highly resolved meshes employing millions of nodes, numerical methods must have the inherent capability to predict unsteady flows. Although at present, (U)RANS methods are likely to remain as the workhorses in industry, the DESider project focussed on the development and combination of these approaches with LES methods in order to "bridge" the gap between the much more expensive (due to high Reynolds numbers in flight), but more accurate (full) LES.
The need for properties is ever increasing to make processes more economical. A good survey of the viscosity data, its critical evaluation and correlation would help design engineers, scientists and technologists in their areas of interest. This type of work assumes more importance as the amount of experimental work in collection and correlation of properties such as viscosity, thermal conductivity, heat capacities, etc has reduced drastically both at the industry, universities, and national laboratories. One of the c o-authors, Professor Viswanath, co-authored a book jointly with Dr. Natarajan Data Book on the Viscosity of Liquids in 1989 which mainly presented collected and evaluated liquid viscosity data from the literature. Although it is one of its kinds in the field, Prof. Viswanath recognized that the design engineers, scientists and technologists should have a better understanding of theories, experimental procedures, and operational aspects of viscometers. Also, rarely the data are readily available at the conditions that are necessary for design of the equipment or for other calculations. Therefore, the data must be interpolated or extrapolated using the existing literature data and using appropriate correlations or models. We have tried to address these issues in this book."
Computational resources have developed to the level that, for the first time, it is becoming possible to apply large-eddy simulation (LES) to turbulent flow problems of realistic complexity. Many examples can be found in technology and in a variety of natural flows. This puts issues related to assessing, assuring, and predicting the quality of LES into the spotlight. Several LES studies have been published in the past, demonstrating a high level of accuracy with which turbulent flow predictions can be attained, without having to resort to the excessive requirements on computational resources imposed by direct numerical simulations. However, the setup and use of turbulent flow simulations requires a profound knowledge of fluid mechanics, numerical techniques, and the application under consideration. The susceptibility of large-eddy simulations to errors in modelling, in numerics, and in the treatment of boundary conditions, can be quite large due to nonlinear accumulation of different contributions over time, leading to an intricate and unpredictable situation. A full understanding of the interacting error dynamics in large-eddy simulations is still lacking. To ensure the reliability of large-eddy simulations for a wide range of industrial users, the development of clear standards for the evaluation, prediction, and control of simulation errors in LES is summoned. The workshop on Quality and Reliability of Large-Eddy Simulations, held October 22-24, 2007 in Leuven, Belgium (QLES2007), provided one of the first platforms specifically addressing these aspects of LES.
The emphasis of this book is on engineering aspects of fluid turbulence. The book explains for example how to tackle turbulence in industrial applications. It is useful to several disciplines, such as, mechanical, civil, chemical, aerospace engineers and also to professors, researchers, beginners, under graduates and post graduates. The following issues are emphasized in the book: - Modeling and computations of engineering flows: The author discusses in detail the quantities of interest for engineering turbulent flows and how to select an appropriate turbulence model; Also, a treatment of the selection of appropriate boundary conditions for the CFD simulations is given. - Modeling of turbulent convective heat transfer: This is encountered in several practical situations. It basically needs discussion on issues of treatment of walls and turbulent heat fluxes. - Modeling of buoyancy driven flows, for example, smoke issuing from chimney, pollutant discharge into water bodies, etc
This volume will contain selected papers from the lectures held at the BAIL 2010 Conference, which took place from July 5th to 9th, 2010 in Zaragoza (Spain). The papers present significant advances in the modeling, analysis and construction of efficient numerical methods to solve boundary and interior layers appearing in singular perturbation problems. Special emphasis is put on the mathematical foundations of such methods and their application to physical models. Topics in scientific fields such as fluid dynamics, quantum mechanics, semiconductor modeling, control theory, elasticity, chemical reactor theory, and porous media are examined in detail.
As mentioned in the Introduction to Volume I, the present monograph is intended both for mathematicians interested in applications of the theory of linear operators and operator-functions to problems of hydrodynamics, and for researchers of applied hydrodynamic problems, who want to study these problems by means of the most recent achievements in operator theory. The second volume considers nonself-adjoint problems describing motions and normal oscillations of a homogeneous viscous incompressible fluid. These ini tial boundary value problems of mathematical physics include, as a rule, derivatives in time of the unknown functions not only in the equation, but in the boundary conditions, too. Therefore, the spectral problems corresponding to such boundary value problems include the spectral parameter in the equation and in the bound ary conditions, and are nonself-adjoint. In their study, we widely used the theory of nonself-adjoint operators acting in a Hilbert space and also the theory of operator pencils. In particular, the methods of operator pencil factorization and methods of operator theory in a space with indefinite metric find here a wide application. We note also that this volume presents both the now classical problems on oscillations of a homogeneous viscous fluid in an open container (in an ordinary state and in weightlessness) and a new set of problems on oscillations of partially dissipative hydrodynamic systems, and problems on oscillations of a visco-elastic or relaxing fluid. Some of these problems need a more careful additional investigation and are rather complicated."
This book is a translation of the French book "Pollution atmospherique. Des p- cessus a la modelisation", published by Springer France (2007). The content is mainly derived from a course devoted to air pollution I taught at Ecole nationale des ponts et chaussees (ENPC; one of the foremost French high schools, at ParisTech Institute of Technology and University Paris-Est) during the decade 1997-2006. This book has of course been deeply in uenced by my research activity at CEREA, the Teaching and Research Center for Atmospheric Envir- ment, a joint laboratory between ENPC and the Research and Development Di- sion of Electricite de France (EDF R&D), that I created and then headed from 2002 to 2007. I want to thank many of my colleagues for discussions, help and review. Thanks to Vivien Mallet for his careful review, his availability and his pieces of advice (both for the content and the form of this book). Thanks to Marc Bocquet, Karine Sartelet- Kata, Irene Korsakissok for their help in reviewing chapters. I want also to thank a few colleagues for having provided me illustrations from their research work. Thanks to Bastien Albriet, Marc Bocquet, Edouard Debry, Irene Korsakissok, H- sein Malakooti, Denis Quelo, Yelva Roustan, Karine Sartelet, Christian Seigneur and Marilyne Tombette. Thanks also to the American family, Celine and Julien, for their review of the introduction.
The articles in this volume present the state-of-the-art in noise prediction, modeling and measurement. The articles are partially based on class notes provided during the course Noise sources in turbulent shear flows', given at CISM on April 2011. The first part contains general concepts of aero acoustics, including vortex sound theory and acoustic analogies, in the second part particular emphasis is put into arguments of interest for engineers and relevant for aircraft design: jet noise, airfoil broadband noise, boundary layer noise (including interior noise and its control) and the concept of noise sources, their theoretical modeling and identification in turbulent lows. All these arguments are treated extensively with the inclusion of many practical examples and references to engineering applications.
This book details a systematic characteristics-based finite element procedure to investigate incompressible, free-surface and compressible flows. Several sections derive the Fluid Dynamics equations from first thermo-mechanics principles and develop this multi-dimensional and infinite-directional upstream procedure by combining a finite element discretization with an implicit non-linearly stable Runge-Kutta time integration for the numerical solution of the Euler and Navier Stokes equations.
Thisvolumecontainsacollectionofpapersbyinternationalexpertsingeoph- ical ?uid dynamics, based upon presentations at a colloquium held in memory of Pedro Ripa on the ?rst anniversary of his untimely death. They review or present recent developments in hydrodynamic stability theory, Hamiltonian ?uid mechanics,balanceddynamics, waves,vortices,generaloceanographyand the physical oceanography of the Gulf ofCalifornia; all of them subjects in which Professor Ripamadeimportant contributions. His work, but also his friendly spiritandkindnesswerehighly regardedandappreciatedby colleagues and students alike around the world. This book is a tribute to his scienti?c legacy and constitutes a valuable reference for researchers and graduate s- dents interested in geophysical and general ?uid mechanics. Earlyin his career asa physicaloceanographer,Pedro Ripa made two la- mark contributions to geophysical ?uid dynamics. In 1981, he showed that the conservation of the potential vorticity is related to the invariance of the eq- tions of motion under the symmetry transformationsof the labels that identify the ?uid particles. That is, potential vorticity conservation is a consequence, via Noether's theorem, of the particle re-labelling symmetry. Two years later he published a paper entitled "General stability conditions for zonal ?ows in a one-layer model on the beta-plane or the sphere", where he established nec- sary conditions for stability in the shallow water equations, nowadays known as "Ripa's Theorem. " This is one of the very few Arnol'd-like stability con- tions that goes beyond two-dimensional or quasi-geostrophic ?ow, and stands alongside other famous stability criteria in making the foundations of the ?eld.
This book covers fundamental principles and numerical methods relevant to the modeling of the injection molding process. As injection molding processing is related to rheology, mechanical and chemical engineering, polymer science and computational methods, and is a rapidly growing field, the book provides a multidisciplinary and comprehensive introduction to the subjects required for an understanding of the complex process. It addresses the up-to-date status of fundamental understanding and simulation technologies, without losing sight of still useful classical approaches. The main chapters of the book are devoted to the currently active fields of flow-induced crystallization and orientation evolution of fiber suspensions, respectively, followed by detailed discussion of their effects on mechanical property, shrinkage and warpage of injection-molded products. The level of the proposed book will be suitable for interested scientists, R&D engineers, application engineers, and graduate students in engineering.
The 24 papers presented at the international concluding colloquium of the German priority programme (DFG-Verbundschwerpunktprogramm) "Transition," held in April 2002 in Stuttgart. The unique and successful programme ran six years, starting April 1996, and was sponsored mainly by the Deutsche Forschungsgemeinschaft, DFG, but also by the Deutsches Zentrum f r Luft-und Raumfahrt, DLR, the Physikalisch-Technische Bundesanstalt Braunschweig, PTB, and Airbus Deutschland. The papers summarise the results of the programme and cover transition mechanisms, transition prediction, transition control, natural transition and measurement techniques, transition - turbulence - separation, and visualisation issues. Three invited papers are devoted to mechanisms of turbulence production, to a general framework of stability, receptivity and control, and a forcing model for receptivity analysis. Almost every transition topic arising in subsonic and transonic flow is covered.
Intended as a textbook for courses in computational fluid dynamics at the senior undergraduate or graduate level, this book is a follow-up to the book Fundamentals of Computational Fluid Dynamics by the same authors, which was published in the series Scientific Computation in 2001. Whereas the earlier book concentrated on the analysis of numerical methods applied to model equations, this new book concentrates on algorithms for the numerical solution of the Euler and Navier-Stokes equations. It focuses on some classical algorithms as well as the underlying ideas based on the latest methods. A key feature of the book is the inclusion of programming exercises at the end of each chapter based on the numerical solution of the quasi-one-dimensional Euler equations and the shock-tube problem. These exercises can be included in the context of a typical course and sample solutions are provided in each chapter, so readers can confirm that they have coded the algorithms correctly. |
You may like...
|