![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of fluids > General
In addition to structure formation in crystallizing polymers and semicrystalline polymers, this second edition completes the topic of transport phenomena. It also reviews solidification by crystallization during cooling and under flow or pressure, which all play an enormous role in polymer melt processing. Generally, there is an intensive interaction between three transport phenomena: heat transfer, momentum transfer (flow, rheology) and (flow induced) crystallization. The strong interaction between the three transport phenomena is a major challenge when it comes to experimentation, and advances in this area are detailed in the book, guiding further development of sound modeling. This book enables readers to follow an advanced course in polymer processing. It is a valuable resource for polymer chemists, applied physicists, rheologists, plastics engineers, mold makers and material scientists.
This monograph, entirely devoted to Convection in Fluids, presents a unified rational approach of various convective phenomena in fluids (mainly considered as a thermally perfect gas or an expansible liquid), where the main driving mechanism is the buoyancy force (Archimedean thrust) or temperature-dependent surface tension in homogeneities (Marangoni effect). Also, the general mathematical formulation (for instance, in the Benard problem - heated from below) and the effect of free surface deformation are taken into account. In the case of atmospheric thermal convection, the Coriolis force and stratification effects are also considered. This volume gives a rational and analytical analysis of the above mentioned physical effects on the basis of the full unsteady Navier-Stokes and Fourier (NS-F) equations - for a Newtonian compressible viscous and heat-conducting fluid - coupled with the associated initials (at initial time), boundary (lower-at the solid plane) and free surface (upper-in contact with ambiant air) conditions. This, obviously, is not an easy but a necessary task if we have in mind a rational modelling process, and work within a numerically coherent simulation on a high speed computer."
This book is a collection of the lectures, held at the International Summer School ISSAOS-2000 in L'Aquila (Italy), given by invited lecturers coming from both Europe and the USA. The goal of the book is to provide a broad panorama of spaceborne remote sensing techniques, at both microwave and visible-infrared bands and by both active and passive sensors, for the retrieval of atmospheric and oceanic parameters. A significant emphasis is given to the physical modeling background, instrument potential and limitations, inversion methods and applications. Topics on international remote sensing programs and assimilation techniques into numerical weather forecast models are also touched. The main purpose of the book is to offer to young scientists, Ph.D. or equivalent students, and to all who would like to have a broad-spectrum understanding of spaceborne remote sensing capabilities, introductory material to each remote sensing topic written by the most qualified experts in the field.
As in previous editions, this ninth edition of Massey 's Mechanics of Fluids introduces the basic principles of fluid mechanics in a detailed and clear manner. This bestselling textbook provides the sound physical understanding of fluid flow that is essential for an honours degree course in civil or mechanical engineering as well as courses in aeronautical and chemical engineering. Focusing on the engineering applications of fluid flow, rather than mathematical techniques, students are gradually introduced to the subject, with the text moving from the simple to the complex, and from the familiar to the unfamiliar. In an all-new chapter, the ninth edition closely examines the modern context of fluid mechanics, where climate change, new forms of energy generation, and fresh water conservation are pressing issues. SI units are used throughout and there are many worked examples. Though the book is essentially self-contained, where appropriate, references are given to more detailed or advanced accounts of particular topics providing a strong basis for further study. For lecturers, an accompanying solutions manual is available.
This book is a generalist textbook; it is designed for anybody interested in heat transmission, including scholars, designers and students. Two criteria constitute the foundation of Annaratone s books, including the present one. The first one consists of indispensable scientific rigor without theoretical exasperation. The inclusion in the book of some theoretical studies, even if admirable for their scientific rigor, would have strengthened the scientific foundation of this publication, yet without providing the reader with further applicable know-how. The second criterion is to deliver practical solution to operational problems. This criterion is fulfilled through equations based on scientific rigor, as well as a series of approximated equations, leading to convenient and practically acceptable solutions, and through diagrams and tables. When a practical case is close to a well defined theoretical solution, corrective factors are shown to offer simple and correct solutions to the problem.
This book, Advances in Water Resources Engineering, Volume 14, covers the topics on watershed sediment dynamics and modeling, integrated simulation of interactive surface water and groundwater systems, river channel stabilization with submerged vanes, non-equilibrium sediment transport, reservoir sedimentation, and fluvial processes, minimum energy dissipation rate theory and applications, hydraulic modeling development and application, geophysical methods for assessment of earthen dams, soil erosion on upland areas by rainfall and overland flow, geofluvial modeling methodologies and applications, and environmental water engineering glossary.
Diffuse interface (D.I.) model for muliphase flows.- Phase separation of viscous ternary liquid mixtures.- Dewetting and decomposing films of simple and complex liquids.- Phase-field models. Multiphase flows are typically described assuming that the different phases are separated by a sharp interface, with appropriate boundary conditions. This approach breaks down whenever the lengthscale of the phenomenon that is being studied is comparable with the real interface thickness, as it happens, for example, in the coalescence and breakup of bubbles and drops, the wetting and dewetting of solid surfaces and, in general, im micro-devices. The diffuse interface model resolves these problems by assuming that all quantities can vary continuously, so that interfaces have a non-zero thickness, i.e. they are "diffuse." The contributions in this book review the theory and describe some relevant applications of the diffuse interface model for one-component, two-phase fluids and for liquid binary mixtures, to model multiphase flows in confined geometries.
This book presents, in a methodical way, updated and comprehensive descriptions and analyses of some of the most relevant problems in the context of fluid-structure interaction (FSI). Generally speaking, FSI is among the most popular and intriguing problems in applied sciences and includes industrial as well as biological applications. Various fundamental aspects of FSI are addressed from different perspectives, with a focus on biomedical applications. More specifically, the book presents a mathematical analysis of basic questions like the well-posedness of the relevant initial and boundary value problems, as well as the modeling and the numerical simulation of a number of fundamental phenomena related to human biology. These latter research topics include blood flow in arteries and veins, blood coagulation and speech modeling. We believe that the variety of the topics discussed, along with the different approaches used to address and solve the corresponding problems, will help readers to develop a more holistic view of the latest findings on the subject, and of the relevant open questions. For the same reason we expect the book to become a trusted companion for researchers from diverse disciplines, such as mathematics, physics, mathematical biology, bioengineering and medicine."
This book offers a comprehensive collection of the most advanced numerical techniques for the efficient and effective solution of simulation and optimization problems governed by systems of time-dependent differential equations. The contributions present various approaches to time domain decomposition, focusing on multiple shooting and parareal algorithms. The range of topics covers theoretical analysis of the methods, as well as their algorithmic formulation and guidelines for practical implementation. Selected examples show that the discussed approaches are mandatory for the solution of challenging practical problems. The practicability and efficiency of the presented methods is illustrated by several case studies from fluid dynamics, data compression, image processing and computational biology, giving rise to possible new research topics. This volume, resulting from the workshop Multiple Shooting and Time Domain Decomposition Methods, held in Heidelberg in May 2013, will be of great interest to applied mathematicians, computer scientists and all scientists using mathematical methods.
Market: Graduate students and researchers in physical kinetics, hydrodynamics, and plasma and solid state physics. Vladimir Krainov has produced one of the few books in the field to concentrate on qualitative methods. He presents order of magnitude solutions for physical quantities in various nonequilibrium statistical processes as well as qualitative solutions of differential equations for macroscopic nonequilibrium processes in gases and other media. Covers topics including free convection, turbulence phenomena, sound propagation, and surface phenomena.
This thesis proposes a new raft-type wave-powered desalination device that can convert wave power into hydraulic energy and use reverse osmosis (RO) to directly desalinate seawater. Both analytical and numerical methods are used to study the hydrodynamic characteristics of the device. Further, the thesis investigates the maximum power extraction and multiple parameter effects on power absorption and averaged permeate water flux. Lastly, it proposes and assesses two power extraction enhancing strategies. The thesis offers a valuable and important reference guide to ocean-wave-and-structure interaction and wave-powered seawater desalination for scientists and engineers alike.
The selected papers contained in this book present the latest research in one of the most challenging, yet most universally applicable areas of technology. Multiphase flows are found in all areas of technology and the range of related problems of interest is vast, including many areas of science and engineering. Recently multiphase fluid dynamics have generated a great deal of attention, leading to many notable advances in experimental, analytical and numerical studies. It is perhaps, however, work on numerical solutions which is the most noticeable owing to the continuing improvements in computer software tools. Progress in numerical methods has permitted the solution of many practical problems, helping to improve our understanding of the physics involved. The presented papers illustrate the close interaction between numerical modellers and researchers working to gradually resolve the many outstanding issues in our understanding of multiphase flow.
This book highlights plasma science and technology-related research and development work at institutes and universities networked through Asian African Association for Plasma Training (AAAPT) which was established in 1988. The AAAPT, with 52 member institutes in 24 countries, promotes the initiation and intensification of plasma research and development through cooperation and technology sharing. With 13 chapters on fusion-relevant, laboratory and industrial plasmas for wide range of applications and basic research and a chapter on AAAPT network, it demonstrates how, with collaborations, high-quality, industrially relevant academic and scientific research on fusion, industrial and laboratory plasmas and plasma diagnostics can be successfully pursued in small research labs. These plasma sciences and technologies include pioneering breakthroughs and applications in (i) fusion relevant research in the quest for long-term, clean energy source development using high-temperature, high- density plasmas and (ii) multibillion-dollar, low-temperature, non-equilibrium and thermal industrial plasmas used in processing, synthesis and electronics.
In the last decade parallel computing has been put forward as the only computational answer to the increasing computational needs arising from very large and complex fluid dynamic problems. Considerable efforts are being made to use parallel computers efficiently to solve several fluid dynamic problems originating in aerospace, climate modelling and environmental applications. Parallel CFD Conferences are international and aim to increase discussion among researchers worldwide. Topics covered in this particular book include typical CFD areas such as turbulence, Navier-Stokes and Euler solvers, reactive flows, with a good balance between both university and industrial applications. In addition, other applications making extensive use of CFD such as climate modelling and environmental applications are also included. Anyone involved in the challenging field of Parallel Computational Fluid Dynamics will find this volume useful in their daily work.
This book contains 23 papers presented at the ECCOMAS Multidisciplinary Jubilee Symposium - New Computational Challenges in Materials, Structures, and Fluids (EMJS08), in Vienna, February 18-20, 2008. The main intention of EMJS08 was to react adequately to the increasing need for interdisciplinary research activities allowing ef?cient solution of complex problems in engineering and in the applied sciences. The 15th anniversary of ECCOMAS (European Community on Computational Methods in Applied Sciences) provided a suitable frame for taking the afo- mentioned situation into account by inviting distinguished colleagues from d- ferent areas of engineering and the applied sciences, encouraging them to choose multidisciplinary topics for their lectures. The main themes of EMJS08 have a long tradition in engineering and in the applied sciences: materials, structures, and ?uids. The solution of scienti?c pr- lems involving ?uids together with solids and structures, not to forget the materials the structures are made of, is of paramount importance in a technical world of rapidly increasing sophistication, referred to as the Leonardo World by the eminent German philosopher Jurgen Mittelstrass. More recently, the main themes of EMJS08 have gained considerable mom- tum, owing to signi?cant progress in nanotechnology. It enables resolution of a multitude of materials into their micro- and nanostructures. Covering aspects such as * Physical and chemical characterization * Multiscale modeling concepts, continuum micromechanics, and computational homogenization, as well as * Applications in various engineering ?elds the individual contributions to this book ?ow along different tracks of ?uids, materials, and structures.
Two-Phase Flow in Refrigeration Systems presents recent developments from the authors' extensive research programs on two-phase flow in refrigeration systems. This book covers advanced mass and heat transfer and vapor compression refrigeration systems and shows how the performance of an automotive air-conditioning system is affected through results obtained experimentally and theoretically, specifically with consideration of two-phase flow and oil concentration. The book is ideal for university postgraduate students as a textbook, researchers and professors as an academic reference book, and by engineers and designers as handbook.
This volume contains a collection of papers from the research program Protective Artificial Respiration (PAR) . In 2005 the German Research Association DFG launched the research program PAR which is a joint initiative of medicine and fluid mechanics. The main long-term objective of this program is the development of a more protective artificial respiratory system to reduce the physical stress of patients undergoing artificial respiration. To satisfy this goal 11 projects have been defined. In each of these projects scientists from medicine and fluid mechanics do collaborate in several experimental and numerical investigations to improve the fundamental knowledge on respiration and to develop a more individual artificial breathing concept. "
Whatdoasupernovaexplosioninouterspace, ?owaroundanairfoil and knocking in combustion engines have in common? The physical and chemical mechanisms as well as the sizes of these processes are quite di?erent. So are the motivations for studying them scienti?cally. The super- 8 nova is a thermo-nuclear explosion on a scale of 10 cm. Astrophysicists try to understand them in order to get insight into fundamental properties of the universe. In ?ows around airfoils of commercial airliners at the scale of 3 10 cm shock waves occur that in?uence the stability of the wings as well as fuel consumption in ?ight. This requires appropriate design of the shape and structure of airfoils by engineers. Knocking occurs in combustion, a chemical 1 process, and must be avoided since it damages motors. The scale is 10 cm and these processes must be optimized for e?ciency and environmental conside- tions. The common thread is that the underlying ?uid ?ows may at a certain scale of observation be described by basically the same type of hyperbolic s- tems of partial di?erential equations in divergence form, called conservation laws. Astrophysicists, engineers and mathematicians share a common interest in scienti?c progress on theory for these equations and the development of computational methods for solutions of the equations. Due to their wide applicability in modeling of continua, partial di?erential equationsareamajor?eldofresearchinmathematics. Asubstantialportionof mathematical research is related to the analysis and numerical approximation of solutions to such equations. Hyperbolic conservation laws in two or more spacedimensionsstillposeoneofthemainchallengestomodernmathematics
The near-field region within an order of 100 nm from the solid interface is an exciting and crucial arena where many important multiscale transport phenomena are physically characterized, such as flow mixing and drag, heat and mass transfer, near-wall behavior of nanoparticles, binding of bio-molecules, crystallization, surface deposition processes, just naming a few. This monograph presents a number of label-free experimental techniques developed and tested for near-field fluid flow characterization. Namely, these include Total Internal Reflection Microscopy (TIRM), Optical Serial Sectioning Microscopy (OSSM), Surface Plasmon Resonance Microscopy (SPRM), Interference Reflection Contrast Microscopy (IRCM), Thermal Near-Field Anemometry, Scanning Thermal Microscopy (STM), and Micro-Cantilever Near-Field Thermometry. Presentation on each of these is laid out for the working principle, how to implement the system, and its example applications, to promote the readers understanding and knowledge of the specific technique that can be applied for their own research interests.
Thermal Separation Technology is a key discipline for many industries and lays the engineering foundations for the sustainable and economic production of high-quality materials. This book provides fundamental knowledge on this field and may be used both in university teaching and in industrial research and development. Furthermore, it is intended to support professional engineers in their daily efforts to improve plant efficiency and reliability. Previous German editions of this book have gained widespread recognition. This first English edition will now make its content available to the international community of students and professionals. In the first chapters of the book the fundamentals of thermodynamics, heat and mass transfer, and multiphase flow are addressed. Further chapters examine in depth the different unit operations distillation and absorption, extraction, evaporation and condensation, crystallization, adsorption and chromatography, and drying, while the closing chapter provides valuable guidelines for a conceptual process development.
The book contains invited lectures and selected contributions presented at the Enzo Levi and XVII Annual Meeting of the Fluid Dynamic Division of the Mexican Physical Society in 2011. It is aimed to fourth year undergraduate and graduate students, and scientists in the field of physics, engineering and chemistry that have interest in Fluid Dynamics from the experimental and theoretical point of view. The invited lectures are introductory and avoid the use of complicate mathematics. The other selected contributions are also adequate to fourth year undergraduate and graduate students. The Fluid Dynamics applications include multiphase flow, convection, diffusion, heat transfer, rheology, granular material, viscous flow, porous media flow, geophysics and astrophysics. The material contained in the book includes recent advances in experimental and theoretical fluid dynamics and is adequate for both teaching and research.
This volume includes revised and extended versions of selected papers presented at the Tenth International Symposium on Applications of Laser Techniques to Fluid Mechanics held in Lisbon in July 2000.The papers describe instrumentation developments for velocity, scalar and multiphase flows and results of measurements of turbulent flows, and combustion and engines. Focus is placed on laser-Doppler anemometry, particle sizing and other methods for the measurement of velocity and scalars, such as particle image velocimetry and laser induced fluorescence. The application of laser techniques to scientific and engineering fluid flow research was emphasized, but contributions to the theory and practice of laser were also considered where they facilitate new improved fluid mechanic research.
Since their first introduction in natural sciences through the work of Einstein on Brownian motion in 1905 and further works, in particular by Langevin, Smoluchowski and others, stochastic processes have been used in several areas of science and technology. For example, they have been applied in chemical studies, or in fluid turbulence and for combustion and reactive flows. The articles in this book provide a general and unified framework in which stochastic processes are presented as modeling tools for various issues in engineering, physics and chemistry, with particular focus on fluid mechanics and notably dispersed two-phase flows. The aim is to develop what can referred to as stochastic modeling for a whole range of applications. |
You may like...
Uncertainty in Data Envelopment Analysis…
Farhad Hosseinzadeh Lotfi, Masoud Sanei, …
Paperback
R2,942
Discovery Miles 29 420
Diagnostic Biomedical Signal and Image…
Kemal Polat, Saban Ozturk
Paperback
R2,952
Discovery Miles 29 520
Artificial Intelligence and Machine…
Vedik Basetti, Chandan Kumar Shiva, …
Paperback
R2,479
Discovery Miles 24 790
|