![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of fluids > General
Computational fluid dynamics (CFD) and optimal shape design (OSD)
are of practical importance for many engineering applications - the
aeronautic, automobile, and nuclear industries are all major users
of these technologies.
Simulation technology, and computational fluid dynamics (CFD) in particular, is essential in the search for solutions to the modern challenges faced by humanity. Revolutions in CFD over the last decade include the use of unstructured meshes, permitting the modeling of any 3D geometry. New frontiers point to mesh adaptation, allowing not only seamless meshing (for the engineer) but also simulation certification for safer products and risk prediction.Mesh Adaptation for Computational Dynamics 1 is the first of two volumes and introduces basic methods such as feature-based and multiscale adaptation for steady models. Also covered is the continuous Riemannian metrics formulation which models the optimally adapted mesh problem into a pure partial differential statement. A number of mesh adaptative methods are defined based on a particular feature of the simulation solution.This book will be useful to anybody interested in mesh adaptation pertaining to CFD, especially researchers, teachers and students.
Fluid mechanics is the study of how fluids behave and interact
under various forces and in various applied situations, whether in
liquid or gas state or both. The author compiles pertinent
information that are introduced in the more advanced classes at the
senior level and at the graduate level. "Advanced Fluid Mechanics"
courses typically cover a variety of topics involving fluids in
various multiple states (phases), with both elastic and non-elastic
qualities, and flowing in complex ways. This new text will
integrate both the simple stages of fluid mechanics
("Fundamentals") with those involving more complex parameters,
including Inviscid Flow in multi-dimensions, Viscous Flow and
Turbulence, and a succinct introduction to Computational Fluid
Dynamics. It will offer exceptional pedagogy, for both classroom
use and self-instruction, including many worked-out examples,
end-of-chapter problems, and actual computer programs that can be
used to reinforce theory with real-world applications.
The field of fluid mechanics is vast and has numerous and diverse applications. Presented papers from the 11th International Conference on Advances in Fluid Dynamics with emphasis on Multiphase and Complex Flow are contained in this book and cover a wide range of topics, including basic formulations and their computer modelling as well as the relationship between experimental and analytical results. Innovation in fluid-structure approaches including emerging applications as energy harvesting systems, studies of turbulent flows at high Reynold number, or subsonic and hypersonic flows are also among the topics covered. The emphasis placed on multiphase flow in the included research works is due to the fact that fluid dynamics processes in nature are predominantly multi-phased, i.e. involving more than one phase of a component such as liquid, gas or plasma. The range of related problems of interest is vast: astrophysics, biology, geophysics, atmospheric processes, and a large variety of engineering applications. Multiphase fluid dynamics are generating a great deal interest, leading to many notable advances in experimental, analytical, and numerical studies in this area. While progress is continuing in all three categories, advances in numerical solutions are likely the most conspicuous, owing to the continuing improvements in computer power and the software tools available to researchers. Progress in numerical methods has not only allowed for the solution of many practical problems but also helped to improve our understanding of the physics involved. Many unresolved issues are inherent in the very definition of multiphase flow, where it is necessary to consider coupled processes on multiple scales, as well as the interplay of a wide variety of relevant physical phenomena.
This book addresses the concepts of unstable flow solutions, convective instability and absolute instability, with reference to simple (or toy) mathematical models, which are mathematically simple despite their purely abstract character. Within this paradigm, the book introduces the basic mathematical tools, Fourier transform, normal modes, wavepackets and their dynamics, before reviewing the fundamental ideas behind the mathematical modelling of fluid flow and heat transfer in porous media. The author goes on to discuss the fundamentals of the Rayleigh-Benard instability and other thermal instabilities of convective flows in porous media, and then analyses various examples of transition from convective to absolute instability in detail, with an emphasis on the formulation, deduction of the dispersion relation and study of the numerical data regarding the threshold of absolute instability. The clear descriptions of the analytical and numerical methods needed to obtain these parametric threshold data enable readers to apply them in different or more general cases. This book is of interest to postgraduates and researchers in mechanical and thermal engineering, civil engineering, geophysics, applied mathematics, fluid mechanics, and energy technology.
Instabilities of fluid flows and the associated transitions between different possible flow states provide a fascinating set of problems that have attracted researchers for over a hundred years. This book addresses state-of-the-art developments in numerical techniques for computational modelling of fluid instabilities and related bifurcation structures, as well as providing comprehensive reviews of recently solved challenging problems in the field.
The book presents novel Computational Fluid Dynamics (CFD) techniques to compute offshore wind and tidal applications. The papers in this volume are based on a mini-symposium held at ECCOMAS 2018. Computational fluid dynamics (CFD) techniques are regarded as the main design tool to explore the new engineering challenges presented by offshore wind and tidal turbines for energy generation. The difficulty and costs of undertaking experimental tests in offshore environments have increased the interest in CFD which is used to design appropriate turbines and blades, understand fluid flow physical phenomena associated with offshore environments, predict power production or characterise offshore environments amongst other topics.
Drag Reduction of Complex Mixtures discusses the concept of drag reduction phenomena in complex mixtures in internal and external flows that are shown experimentally by dividing flow patterns into three categories. The book is intended to support further experiments or analysis in drag reduction. As accurately modeling flow behavior with drag reduction is always complex, and since drag reducing additives or solid particles are mixed in fluids, this book covers these complex phenomena in a concise, but comprehensive manner.
This is the second revised and enhanced edition of the book Gas Turbine Design, Components and System Integration written by a world-renowned expert with more than forty years of active gas turbine R&D experience. It comprehensively treats the design of gas turbine components and their integration into a complete system. Unlike many currently available gas turbine handbooks that provide the reader with an overview without in-depth treatment of the subject, the current book is concentrated on a detailed aero-thermodynamics, design and off-deign performance aspects of individual components as well as the system integration and its dynamic operation. This new book provides practicing gas turbine designers and young engineers working in the industry with design material that the manufacturers would keep proprietary. The book is also intended to provide instructors of turbomachinery courses around the world with a powerful tool to assign gas turbine components as project and individual modules that are integrated into a complete system. Quoting many statements by the gas turbine industry professionals, the young engineers graduated from the turbomachinery courses offered by the author, had the competency of engineers equivalent to three to four years of industrial experience.
In today's global context, there has been extensive research conducted in reducing harmful emissions to conserve and protect our environment. In the automobile and power generation industries, diesel engines are being utilized due to their high level of performance and fuel economy. However, these engines are producing harmful pollutants that contribute to several global threats including greenhouse gases and ozone layer depletion. Professionals have begun developing techniques to improve the performance and reduce emissions of diesel engines, but significant research is lacking in this area. Recent Technologies for Enhancing Performance and Reducing Emissions in Diesel Engines is a pivotal reference source that provides vital research on technical and environmental enhancements to the emission and combustion characteristics of diesel engines. While highlighting topics such as biodiesel emulsions, nanoparticle additives, and mathematical modeling, this publication explores the potential additives that have been incorporated into the performance of diesel engines in order to positively affect the environment. This book is ideally designed for chemical and electrical engineers, developers, researchers, power generation professionals, mechanical practitioners, scholars, ecologists, scientists, graduate students, and academicians seeking current research on modern innovations in fuel processing and environmental pollution control.
Efficient numerical solution of realistic and, therefore, complex
equation systems occupies many researchers in many disciplines. For
various reasons, but mainly in order to approximate reality, a very
large number of unknowns are needed. Using classical techniques,
the solution of such a system of equations would take too long, and
so sometimes MultiLevel techniques are used to accelerate
convergence. Over the last one and a half decades, the authors have
studied the problem of Elastohydrodynamic Lubrication, governed by
a complex integro-differential equation. Their work has resulted in
a very efficient and stable solver. In this book they describe the
different intermediate problems analyzed and solved, and how those
ingredients finally come together in the EHL solver. A number of
these intermediate problems, such as Hydrodynamic Lubrication and
Dry Contact, are useful in their own right. In the Appendix the
full codes of the Poisson problem, the Hydrodynamic Lubrication
problem, the dry contact solver and the EHL solver are given. These
codes are all written in 'C' language, based on the 'ANSI-C'
version.
Solid Liquid Separation includes important industrial processes
used for recovery and processing of solids or purification of
liquids. Most of the process industries in which particulate
slurries are handled use some form of solid-liquid separation and
yet the subject is not adequately covered in most higher education
courses. This book is designed to bring the readers up-to-date on the
principles and industrial practices of solid-liquid separation and
washing technology. Particular attention is given to hardware and
to its evaluation, application and selection. Whilst not
exclusively concerned with filtration and sedimentation, these
operations are dealt with in depth.
This book aims to be the reference book in the area of oxyfuel combustion, covering the fundamentals, design considerations and current challenges in the field. Its first part provides an overview of the greenhouse gas emission problem and the current carbon capture and sequestration technologies. The second part introduces oxy-fuel combustion technologies with emphasis on system efficiency, combustion and emission characteristics, applications and related challenges. The third part focuses on the recent developments in ion transport membranes and their performance in both oxygen separation units and oxygen transport reactors (OTRs). The fourth part presents novel approaches for clean combustion in gas turbines and boilers. Computational modelling and optimization of combustion in gas turbine combustors and boiler furnaces are presented in the fifth part with some numerical results and detailed analyses.
Explores the latest applications arising from the intersection of nanotechnology and microfluidics In the past two decades, microfluidics research has seen phenomenal growth, with many new and emerging applications in fields ranging from chemistry, physics, and biology to engineering. With the emergence of nanotechnology, microfluidics is currently undergoing dramatic changes, embracing the rising field of nanofluidics. This volume reviews the latest devices and applications stemming from the merging of nanotechnology with microfludics in such areas as drug discovery, bio-sensing, catalysis, electrophoresis, enzymatic reactions, and nanomaterial synthesis. Each of the ten chapters is written by a leading pioneer at the intersection of nanotechnology and microfluidics. Readers not only learn about new applications, but also discover which futuristic devices and applications are likely to be developed. Topics explored in this volume include: New lab-on-a-chip systems for drug delivery Integration of microfluidics with nanoneuroscience to study the nervous system at the single-cell level Recent applications of nanoparticles within microfluidic channels for electrochemical and optical affinity biosensing Novel microfluidic approaches for the synthesis of nanomaterials Next-generation alternative energy portable power devices References in each chapter guide readers to the primary literature for further investigation of individual topics. Overall, scientists, researchers, engineers, and students will not only gain a new perspective on what has been done, but also the nanotechnology tools they need to develop the next generation of microfluidic devices and applications. Microfluidic Devices for Nanotechnology is a two-volume publication, the first ever to explore the synergies between microfluidics and nanotechnology. The first volume covers fundamental concepts; this second volume examines applications.
This book contains the papers presented at the Parallel
Computational Fluid Dynamics 1998 Conference.
This book is an homage to the pioneering works of E. Aero and G. Maugin in the area of analytical description of generalized continua. It presents a collection of contributions on micropolar, micromorphic and strain gradient media, media with internal variables, metamaterials, beam lattices, liquid crystals, and others. The main focus is on wave propagation, stability problems, homogenization, and relations between discrete and continuous models.
An electrorheological (ER) suspension is made from an insulating
liquid medium embodying either a semi-conductive particulate
material or a semi-conductive liquid material (usually a liquid
crystal material). Since its mechanical properties can be easily
controlled over a wide range (almost from a pure liquid to a
solid), the ER fluid can be used as an electric and mechanical
interface in various industrial areas, for example, in the
automotive industrial for clutch, brake and damping systems and in
robotic arm joints and hands.
This book reports on the EU-funded 7th Framework project, Go4Hybrid (Grey Area Mitigation for Hybrid RANS-LES Methods). It presents new findings concerning the accuracy and reliability of current hybrid RANS-LES methods. It describes improved formulations of both non-zonal and embedded hybrid strategies, together with their validation in a broad range of flow cases, and highlighting some key industrial applications. The book provides students, researchers and professionals in the field of applied computational fluid dynamics with a timely, practice-oriented reference guide.
The shape of drops and bubbles is the centre of interest for many
interfacial scientists. This book describes the most recent
accomplishments to make use of drops and bubbles in fundamental
research and application. After a general introduction into the mechanics of liquid
menisci, chapters are dedicated to methods based on drops or
bubbles. The chapters about the three main drop experiments provide
the theoretical basis, a description of experimental set-ups,
specific advantages and disadvantages, correction and calibration
problems, experimental examples and their interpretation: pendent
and sessile drop, drop volume, and spinning drop technique. The maximum bubble pressure technique as a particular capillary
pressure method is described, with emphasis on the most recent
developments which made this technique applicable to extremely
short adsorption times, down to the range of milliseconds and less.
Problems connected with aerodynamics and hydrodynamics are
discussed and used to show the limits of this widely used standard
method. The oscillating bubble technique provides information not
available by other techniques, for example about the dilational
rheology of adsorption layers and relaxation processes at the
interface. The description of rising bubbles in surfactant solutions will
contain the hydrodynamic basis as well as the theoretical
description of the effect of interfacial layers on the movement of
bubbles. Besides the theoretical basis experimental data, such as
water purification, flotation processes etc. and the relevance for
practical applications will be presented. An important example for the application of drops is metallurgy,
where the surface tension of metals and alloys is an important
parameter for many applications. The chapters on drop shape
analysis by using fibre technique and on force measurements between
emulsion droplets are of much practical relevance. Lists of references and symbols are given separately at the end
of each chapter while a common subject index is given at the end of
the book.
This book explores the dynamics of planetary and stellar fluid layers, including atmospheres, oceans, iron cores, and convective and radiative zones in stars, describing the different theoretical, computational and experimental methods used to study these problems in fluid mechanics, including the advantages and limitations of each method for different problems. This scientific domain is by nature interdisciplinary and multi-method, but while much effort has been devoted to solving open questions within the various fields of mechanics, applied mathematics, physics, earth sciences and astrophysics, and while much progress has been made within each domain using theoretical, numerical and experimental approaches, cross-fertilizations have remained marginal. Going beyond the state of the art, the book provides readers with a global introduction and an up-to-date overview of relevant studies, fully addressing the wide range of disciplines and methods involved. The content builds on the CISM course "Fluid mechanics of planets and stars", held in April 2018, which was part of the research project FLUDYCO, supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program.
This monograph contains expert knowledge on complex fluid-flows in microfluidic devices. The topical spectrum includes, but is not limited to, aspects such as the analysis, experimental characterization, numerical simulations and numerical optimization. The target audience primarily comprises researchers who intend to embark on activities in microfluidics. The book can also be beneficial as supplementary reading in graduate courses.
This book consists of selected peer-reviewed papers presented at the NAFEMS India Regional Conference (NIRC 2018). It covers current topics related to advances in computer aided design and manufacturing. The book focuses on the latest developments in engineering modelling and simulation, and its application to various complex engineering systems. Finite element method/finite element analysis, computational fluid dynamics, and additive manufacturing are some of the key topics covered in this book. The book aims to provide a better understanding of contemporary product design and analyses, and hence will be useful for researchers, academicians, and professionals. |
You may like...
High Speed Catamarans and Multihulls…
Liang Yun, Alan Bliault, …
Hardcover
R7,275
Discovery Miles 72 750
Water (R718) Turbo Compressor and…
Milan N. Sarevski, Vasko N. Sarevski
Paperback
Computational Fluid Dynamics in Fire…
Guan Heng Yeoh, Kwok Kit Yuen
Hardcover
Advanced Applications of Supercritical…
Lin Chen, Yuhiro Iwamoto
Hardcover
R6,070
Discovery Miles 60 700
Know and Understand Centrifugal Pumps
L. Bachus, A. Custodio
Hardcover
R2,361
Discovery Miles 23 610
Topology Optimization Theory for Laminar…
Yongbo Deng, Yihui Wu, …
Hardcover
R4,653
Discovery Miles 46 530
|