Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Biology, life sciences > Life sciences: general issues > Neurosciences
This volume brings together various theories of how aberrations in mitochondrial function and morphology contribute to neurodegeneration in idiopathic and familial forms of Parkinson's disease. Moreover, it comprehensively reviews the current search for therapies, and proposes how molecules are involved in specific functions as attractive therapeutic targets. It is expected to facilitate critical thought and discussion about the fundamental aspects of neurodegeneration in Parkinson's disease and foster the development of therapeutic strategies among researchers and graduate students. Theories of idiopathic Parkinson's etiology support roles for chronic inflammation and exposure to heavy metals or pesticides. Interestingly, as this project proposes, a case can be made that abnormalities in mitochondrial morphology and function are at the core of each of these theories. In fact, the most common approach to the generation of animal and cell-culture models of idiopathic Parkinson's disease involves exposure to mitochondrial toxins. Even more compelling is the fact that most familial patients harbor genetic mutations that cause disruptions in normal mitochondrial morphology and function. While there remains to be no effective treatment for Parkinson's disease, efforts to postpone, prevent and "cure" onset mitochondrial aberrations and neurodegeneration associated with Parkinson's disease in various models are encouraging. While only about ten percent of Parkinson's patients inherit disease-causing mutations, discovering common mechanisms by which familial forms of Parkinson's disease manifest will likely shed light on the pathophysiology of the more common idiopathic form and provide insight to the general process of neurodegeneration, thus revealing therapeutic targets that will become more and more accessible as technology improves.
After a little more than 20 years since the original discovery of neuropeptide Y (NPY) by Tatemoto and colleagues, the field of NPY research has made remarkable progress and is coming of age.The present volume addresses all major topics in connection with NPY and related peptides by established leaders in their respective areas. Experienced NPY-aficionados will certainly find new and useful additional information in this volume and newcomers to the field will hopefully discover how much exciting research this still has to offer.
This book is a timely report on current neurotechnology research. It presents a snapshot of the state of the art in the field, discusses current challenges and identifies new directions. The book includes a selection of extended and revised contributions presented at the 2nd International Congress on Neurotechnology, Electronics and Informatics (NEUROTECHNIX 2014), held October 25-26 in Rome, Italy. The chapters are varied: some report on novel theoretical methods for studying neuronal connectivity or neural system behaviour; others report on advanced technologies developed for similar purposes; while further contributions concern new engineering methods and technological tools supporting medical diagnosis and neurorehabilitation. All in all, this book provides graduate students, researchers and practitioners dealing with different aspects of neurotechnologies with a unified view of the field, thus fostering new ideas and research collaborations among groups from different disciplines.
Well known experts in the field of Chronobiology from around the world, provide an integrative view of the state of the art of circadian biology. At present, genetic and epigenetic interaction of regulatory pathways among circadian oscillators, metabolic networks, cellular differentiation and neuronal communication are subject of intense scrutiny. The book is organized in three sections: The first includes selected examples of the circadian systems of crustaceans, insects, fish, birds and mammals. The second is a detailed view of the physiological mechanisms underlying the circadian clocks in mammals. Finally, in the third section some examples of the relevance of circadian biology and circadian misalignment to health and disease are provided including nutrition and metabolism, obesity, cancer, cardiovascular and pulmonary diseases, Huntington and affective diseases. This section concludes with a brief review on gene therapy and its potential use as a therapeutic tool to correct "clock genes" pathologies. This book is aimed at all those interested in contemporary aspects of physiology, biochemistry and molecular biology applied to the study and characterization of timing systems.. It could be used as an initial approach to this field, but it also provides updated information for those already familiar with the fascinating field of Chronobiology.
The 3rd World Congress on Genetics, Geriatrics, and Neurodegenerative Disease Research (GeNeDis 2018), focuses on recent advances in genetics, geriatrics, and neurodegeneration, ranging from basic science to clinical and pharmaceutical developments. It also provides an international forum for the latest scientific discoveries, medical practices, and care initiatives. Advanced information technologies are discussed, including the basic research, implementation of medico-social policies, and the European and global issues in the funding of long-term care for elderly people.
Does the brain create the mind, or is some external entity
involved? In addressing this "hard problem" of consciousness, we
face a central human challenge: what do we really know and how do
we know it? Tentative answers in this book follow from a synthesis
of profound ideas, borrowed from philosophy, religion, politics,
economics, neuroscience, physics, mathematics, and cosmology, the
knowledge structures supporting our meager grasps of reality. This
search for new links in the web of human knowledge extends in many
directions: the "shadows" of our thought processes revealed by
brain imagining, brains treated as complex adaptive systems that
reveal fractal-like behavior in the brain's nested hierarchy,
resonant interactions facilitating functional connections in brain
tissue, probability and entropy as measures of human ignorance,
fundamental limits on human knowledge, and the central role played
by information in both brains and physical systems.
Over the past decade, we have made great advances in the field of multiple sclerosis (MS) research, and this book focuses on those advances in MS pathogenesis and treatment. While some of these advances have been through new approaches and ideas that have emerged in the last decade such as the newly identified protective role that amyloid proteins may play in MS or the use of helminths to treat autoimmune diseases, others have evolved from previous theories and ideas that have only now gained momentum and a deeper understanding such as the role of HLA or gender in MS susceptibility. This book covers these emerging and evolving topics and highlights the substantial advancements made in elucidation of the factors regulating susceptibility or disease progression, identification of new ways to monitor or predict MS pathology, and development of new strategies for treating MS.
It can be reasonably anticipated that, over the next generations, the proportion of elderly people will remarkably increase and, with this, the number ofpersons suffering from acute (e.g. cerebral ischemia) or chronic neurodegenerative disorders. To date, approved drugs only alleviate the symptoms ofthese diseases (for instance, acetylcholinesterase inhibitors in Alzheimer disease and L-dopa and dopamine-agonists in Parkinson disease), while none seems to stop the progression of the degenerative processes underlying them. The development of effective preventive or protective therapies has been impeded by the limitations of our knowledge of the causes and the mechanisms by which neurons die in neurodegenerative disorders. Evidence accumulated in the past 20 years indicated that the major excitatory neurotransmitter glutamate may play a role as neurotoxin in several conditions. In particular, the glutamatergic system dysfunction seems to be an early event working as a common pathway in the pathogenesis ofa large number ofacute and chronic neurological disorders, in strict conjunction with other important mechanisms, such as oxidative stress and energetic failure, and probably triggered by different mechanisms in various diseases. In consideration of that, drug discovery efforts over the last decade have been focused on the search for drugs that either reduce glutamate synaptic levels or block its postsynaptic effects. Despite numerous reviews on basic mechanisms and clinical aspects ofthe excitotoxic phenomenon, so far no comprehensive book has covered the topic in all its complexity, starting from basic pharmacological mechanisms, to .animal models of diseases and finally to clinical pathogenic and therapeutic implications.
With the invitation to edit this volume, I wanted to take the opportunity to assemble reviews on different aspects of circadian clocks and rhythms. Although most c- tributions in this volume focus on mammalian circadian clocks, the historical int- duction and comparative clocks section illustrate the importance of various other organisms in deciphering the mechanisms and principles of circadian biology. Circadian rhythms have been studied for centuries, but only recently, a mole- lar understanding of this process has emerged. This has taken research on circadian clocks from mystic phenomenology to a mechanistic level; chains of molecular events can describe phenomena with remarkable accuracy. Nevertheless, current models of the functioning of circadian clocks are still rudimentary. This is not due to the faultiness of discovered mechanisms, but due to the lack of undiscovered processes involved in contributing to circadian rhythmicity. We know for example, that the general circadian mechanism is not regulated equally in all tissues of m- mals. Hence, a lot still needs to be discovered to get a full understanding of cir- dian rhythms at the systems level. In this respect, technology has advanced at high speed in the last years and provided us with data illustrating the sheer complexity of regulation of physiological processes in organisms. To handle this information, computer aided integration of the results is of utmost importance in order to d- cover novel concepts that ultimately need to be tested experimentally.
Dopamine, a catecholamine transmitter, plays a number of vital physiological roles in the brain and body, and, in recent years, studies on the role of dopamine in disease have opened new avenues of research and discovery. In Dopamine: Methods and Protocols, experts and key figures within the field provide detailed protocols on leading approaches in the study of dopamine within biological systems. Divided into sections on cellular/biochemical, imaging, genetics, and electrophysiology, this collections includes protocols for bioluminescence and fluorescence imaging, receptor immunoprecipitation and proteomic analysis, creation and characterization of a mouse model of Parkinson's disease, real time measurement of dopamine in the brain, and modeling signal transduction in silico. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective subjects, lists of materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and convenient, Dopamine: Methods and Protocols serves as an ideal guide for students and experts alike, as well as for anyone interested in exploring the vast and crucial field of dopamine research.
With many areas of science reaching across their boundaries and becoming more and more interdisciplinary, students and researchers in these fields are confronted with techniques and tools not covered by their particular education. Especially in the life- and neurosciences quantitative models based on nonlinear dynamics and complex systems are becoming as frequently implemented as traditional statistical analysis. Unfamiliarity with the terminology and rigorous mathematics may discourage many scientists to adopt these methods for their own work, even though such reluctance in most cases is not justified. This book bridges this gap by introducing the procedures and methods used for analyzing nonlinear dynamical systems. In Part I, the concepts of fixed points, phase space, stability and transitions, among others, are discussed in great detail and implemented on the basis of example elementary systems. Part II is devoted to specific, non-trivial applications: coordination of human limb movement (Haken-Kelso-Bunz model), self-organization and pattern formation in complex systems (Synergetics), and models of dynamical properties of neurons (Hodgkin-Huxley, Fitzhugh-Nagumo and Hindmarsh-Rose). Part III may serve as a refresher and companion of some mathematical basics that have been forgotten or were not covered in basic math courses. Finally, the appendix contains an explicit derivation and basic numerical methods together with some programming examples as well as solutions to the exercises provided at the end of certain chapters. Throughout this book all derivations are as detailed and explicit as possible, and everybody with some knowledge of calculus should be able to extract meaningful guidance follow and apply the methods of nonlinear dynamics to their own work. "This book is a masterful treatment, one might even say a gift, to the interdisciplinary scientist of the future." "With the authoritative voice of a genuine practitioner, Fuchs is a master teacher of how to handle complex dynamical systems." "What I find beautiful in this book is its clarity, the clear definition of terms, every step explained simply and systematically." (J.A.Scott Kelso, excerpts from the foreword)
The present work is the third in a series constituting an extension of my doctoral thesis done at Stanford in the early 1970s. Like the earlier works, The Reciprocal Modular Brain in Economics and Politics, Shaping the Rational and Moral Basis of Organization, Exchange, and Choice (Kluwer AcademicfPlenum Publishing, 1999) and Toward Consilience: The Bioneurological Basis of Behavior, Thought, Experience, and Language (Kluwer AcademicfPlenum Publishing, 2000), it may also be considered to respond to the call for consilience by Edward O. Wilson. I agree with Wilson that there is a pressing need in the sciences today for the unification of the social with the natural sciences. I consider the present work to proceed from the perspective of behavioral ecology, specifically a subfield which I choose to call interpersonal behavioral ecology. Ecology, as a general field, has emerged in the last quarter of the 20th century as a major theme of concern as we have become increasingly aware that we must preserve the planet whose limited resources we share with all other earthly creatures. Interpersonal behavioral ecology, however, focuses not on the physical environment, but upon our social environment. It concerns our interpersonal behavioral interactions at all levels, from simple dyadic one-to-one personal interactions to our larger, even global, social, economic, and political interactions.
Nearly, 50 years ago, Karl Pribram in a discussion section accompanying MacLean's proposal of a limbic system, criticized the visceral or limbic brain concept as theoretically too vague and cumbersome. In a recent review of the limbic system, Swanson points to Brodal's criticism that the discovery of connections of limbic structures with virtually all parts of the nervous system render the concept of the limbic system useless, and better abandoned. Additional dissatisfaction surrounding the limbic brain concept stems from the feeling that it is historically inert (an antiquated 19th century construct). In our current age of neural networks, and parallel distributed process it is of little value, merely an historical curio. So why then this int- duction to limbic brain anatomy? We offer several interrelated rationales behind our labors. Recapitulation in the Service of Education: Although concepts had evolved in the second half of this century which effectively overthrew the idea of relatively isolated hemispheric districts (i. e. striatal, cortical, and limbic), parsing the hemisphere into these three districts was an important preliminary step achieved by our forebears in their efforts to understand the large scale structure of the higher mammalian cerebral hemisphere. An examination of how the limbic brain concept came to be provides an opp- tunity to recapitulate the process of exploration, discovery, and und- standing as it relates to one of these principle hemispheric domains.
Nurture or nature? Biology or environment? Why are some people intelligent, or personable, or creative and others obtuse, or shy, or unimaginative? Although each human being is a unique mixture of positive and negative traits and behaviors, the question remains: What is the neurobiological basis for each individuala (TM)s makeup? For example, why does one person suffer from a disorder (e.g., ADHD, autism, mental retardation) and another lives free of maladies? These are just some of the issues addressed in detail in Neurobiology of Exceptionality. The introductory chapter provides a broad-based overview of current neurobiological techniques (i.e., terms, procedures, and technologies), which are followed by chapters that offer in-depth examination of the neurobiological bases for: a [ Impulsive sensation seeking This volume provides a one-stop source for clinical psychologists and other allied mental health professionals to access information on a wide range of research on the neurobiology of psychological and psychiatric traits. It is designed to give readers an overview of the current knowledge base of the biological processes for each trait. Ita (TM)s unlikely that any one book could cover all human traits, but the Neurobiology of Exceptionality addresses a wide range of exceptional psychological traits and psychiatric disorders.
Brain Landscape: The Coexistence of Neuroscience and Architecture is the first book to serve as an intellectual bridge between architectural practice and neuroscience research. John P. Eberhard, founding President of the non-profit Academy of Neuroscience for Architecture, argues that increased funding, and the ability to think beyond the norm, will lead to a better understanding of how scientific research can change how we design, illuminate, and build spaces. Inversely, he posits that by better understanding the effects that buildings and places have on us, and our mental state, the better we may be able to understand how the human brain works. This book is devoted to describing architectural design criteria for schools, offices, laboratories, memorials, churches, and facilities for the aging, and then posing hypotheses about human experiences in such settings.
This book provides the basics of odor, odor analysis techniques, sensors used in odor analysis and overview of odor measurement techniques. For beginners as well researchers this book is a brief guide for odor measurement and analysis. The book includes a special chapter dedicated to practical implementation of e-nose sensor devices with software utility, which guides students to prepare projects and work in practical analysis. It also includes material from early to latest technology research available in the market of e-nose era. Students and researchers who want to learn the basics of biomedical engineering and sensor measurement technology will find this book useful.
This introductory text lays particular emphasis on the relationship between development and behaviour. Indeed, the second part of the book is devoted to examining the role of factors present during development which influence the growth of the nervous system and subsequent behaviour. Throughout the subject matter is extensively illustrated in clear, colour diagrams, and each chapter ends with learning objectives and questions.
Thyroid hormone plays an important role in development and functional maintenance in the central nervous system. Deficiency of thyroid hormone during fetal and early postnatal life induces abnormal development known as cretinism in humans. However, the molecular mechanism of thyroid hormone action has not yet been fully understood. Thyroid hormone action in the brain may be disrupted under various pathological conditions. In addition, environmental factors including endocrine-disrupting chemicals and bacterial endotoxins may disrupt thyroid hormone action in brain, causing abnormal brain development and functional disruption. This is a first book to comprehensively describe the effect of thyroid hormone disruption in the central nervous system. The first section deals with the disruption of thyroid hormone action at the molecular level. First the authors provide a summary of the possible molecular mechanisms of thyroid hormone action in the brain, then they discuss several factors that may disrupt thyroid hormone action. In the second section, animal models to study thyroid hormone action will be introduced. An interesting character of thyroid hormone deficiency is that, without thyroid hormone, the thyroid hormone receptor may act as a "repressor" of gene expression, causing more severe consequence than those of thyroid hormone receptor knockout animals. Thus, several different kind of animal models may be used to clarify the role of thyroid hormone and its receptor in the brain. In the third section, human studies on thyroid disease and neurodevelopment will be introduced. Although endemic cretinism induced by iodine deficiency and sporadic cretinism by various thyroid mutation are well known, the pathophysiological mechanisms that create each abnormal phenotype are not fully understood.
The ?eld of cellular responses to DNA damage has attained widespread recognition and interest in recent years commensurate with its fundamental role in the ma- tenance of genomic stability. These responses, which are essential to preventing cellular death or malignant transformation, are organized into a sophisticated s- tem designated the "DNA damage response". This system operates in all living organisms to maintain genomic stability in the face of constant attacks on the DNA from a variety of endogenous by-products of normal metabolism, as well as exogenous agents such as radiation and toxic chemicals in the environment. The response repairs DNA damage via an intricate cellular signal transduction network that coordinates with various processes such as regulation of DNA replication, tr- scriptional responses, and temporary cell cycle arrest to allow the repair to take place. Defects in this system result in severe genetic disorders involving tissue degeneration, sensitivity to speci?c damaging agents, immunode?ciency, genomic instability, cancer predisposition and premature aging. The ?nding that many of the crucial players involved in DNA damage response are structurally and functionally conserved in different species spurred discoveries of new players through similar analyses in yeast and mammals. We now understand the chain of events that leads to instantaneous activation of the massive cellular responses to DNA lesions. This book summarizes several new concepts in this rapidly evolving ?eld, and the advances in our understanding of the complex network of processes that respond to DNA damage.
When we began to organize the workshop "Calcium and Cellular Metabolism: Transport and Regulation" the goal we had in mind was to put together the knowledge of 2 several specialists on Ca + homeostasis, with various examples of cellular metabolisms 2 2 (such as protein synthesis), regulated by Ca + ions. Regarding the homeostasis of Ca + ions, we invited Ernesto Carafoli to write the first chapter as a general state-of-the-art introductory review. On the other hand, the other chapters are the contribution of different specialists on membrane calcium transport mechanisms, aiming to reunite at least in part the wide field of calcium homeostasis. We roughly try to group chapters that share similar subjects. The first group of chapters (Chapters 2 to 6), are mainly related to calcium channels. Thus, Chapter 2 by Rodolfo Llimis et a . describes a new concept related to the dimen sions of the calcium action domain at the inner mouth of calcium channels in the squid gi ant synapse and its relationship to neurotransmitter release. Chapter 3 by Martin Morad et a . informs us about new ways of identifying and measuring, by confocal microscopy, in dividual sites where calcium release occurs in ventricular myocytes. In the same group Osvaldo Uchitel and Eleonora Katz classify and evaluate the variety of calcium channels at the neuromuscular junction, in Chapter 4. Chapter 5 by Gustavo Brum et a ."
Shortlisted for the Royal Society Science Book Prize 2021 'To compare any book to a Sacks is unfair, but this one lives up to it . . . I finished it feeling thrillingly unsettled, and wishing there was more.' - James McConnachie, Sunday Times In Sweden, refugee children fall asleep for months and years at a time. In upstate New York, high school students develop contagious seizures. In the US Embassy in Cuba, employees complain of headaches and memory loss after hearing strange noises in the night. These disparate cases are some of the most remarkable diagnostic mysteries of the twenty-first century, as both doctors and scientists have struggled to explain them within the boundaries of medical science and - more crucially - to treat them. What unites them is that they are all examples of a particular type of psychosomatic illness: medical disorders that are influenced as much by the idiosyncratic aspects of individual cultures as they are by human biology. Inspired by a poignant encounter with the sleeping refugee children of Sweden, Wellcome Prize-winning neurologist Suzanne O'Sullivan travels the world to visit other communities who have also been subject to outbreaks of so-called 'mystery' illnesses. From a derelict post-Soviet mining town in Kazakhstan, to the Mosquito Coast of Nicaragua via an oil town in Texas, to the heart of the Maria Mountains in Colombia, O'Sullivan hears remarkable stories from a fascinating array of people, and attempts to unravel their complex meaning while asking the question: who gets to define what is and what isn't an illness? Reminiscent of the work of Oliver Sacks, Stephen Grosz and Henry Marsh, The Sleeping Beauties is a moving and unforgettable scientific investigation with a very human face. 'A study of diseases that we sometimes say are 'all in the mind', and an explanation of how unfair that characterisation is.' - Tom Whipple, The Times Books of the Year
Neuropharmacology of Neuroprotection Volume 254, the latest release in the Progress in Brain Research series, highlights new advances in the field, with this new volume presenting interesting chapters. Each chapter is written by an international board of authors.
Gonadotropin-releasing hormone (GnRH) cells are the key regulators of reproductive function in all vertebrate organisms. The GnRH molecule is synthesized in a small number of neurons in rostral hypothalamic regions of the brain. In mammals, these neurons release the GnRH decapeptide into the portal capillary system leading to the anterior pituitary gland. There, GnRH causes the release of the gonadotropins, luteinizing hormone (LH) and follicle-stimulating hormone (FSH), which in turn act upon the gonads to stimulate their maturation, and to cause synthesis of sex steroid hormones, estrogen, progesterone and testosterone. Although each of the levels of the hypothalamic-pituitary-gonadal axis is critical for reproductive function, GnRH neurons play the primary role in the control of reproductive maturation and adult reproductive function, and may even play a role in reproductive senescence. Since its discovery in 1970, there has been intense interest in GnRH-producing neurons, with more than 8000 papers and chapters in the last decade alone. Despite this activity of research in basic and clinical science, there has never been a book written specifically on GnRH neurons. GnRH: The Master Molecule of Reproduction aims to bring together the large and diverse literature of both laboratory and applied research that focuses on these unique cells. This book will provide basic background into reproductive neuroendocrinology, as well as specifics regarding the role of GnRH neurons in the control of reproduction. Students studying endocrinology, reproduction, neuroendocrinology or molecular endocrinology will benefit from this book. In addition, this book will take a multi-species approach which will be useful both to basic researchers as well as clinicians. Whenever possible, species differences and similarities will be presented, and if possible, studies on humans, or the clinical relevance of basic research findings to humans will be discussed (such as the treatment of reproductive disorders such as abnormalities in pubertal development, or infertility).
In this book, leading scientists in the fields of sensory biology, neuroscience, physics and engineering explore the basic operational principles and behavioral uses of flow sensing in animals and how they might be applied to engineering applications such as autonomous control of underwater or aerial vehicles. Although humans possess no flow-sensing abilities, countless aquatic (e.g. fish, cephalopods and seals), terrestrial (e.g. crickets and spiders) and aerial (e.g. bats) animals have flow sensing abilities that underlie remarkable behavioral feats.These include the ability to follow silent hydrodynamic trails long after the trailblazer has left the scene, to form hydrodynamic images of their environment in total darkness, and to swim or fly efficiently and effortlessly in the face of destabilizing currents and winds. " |
You may like...
Grasp - The Science Transforming How We…
Sanjay Sarma, Luke Yoquinto
Hardcover
Creating Modern Neuroscience: The…
Gordon M Shepherd MD, DPhil
Hardcover
R2,252
Discovery Miles 22 520
Neuroplasticity - Insights of Neural…
Victor V. Chaban
Hardcover
|