![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Circuits & components
This book explains in layman's terms how CMOS transistors work. The author explains step-by-step how CMOS transistors are built, along with an explanation of the purpose of each process step. He describes for readers the key inventions and developments in science and engineering that overcame huge obstacles, enabling engineers to shrink transistor area by over 1 million fold and build billions of transistor switches that switch over a billion times a second, all on a piece of silicon smaller than a thumbnail.
Interconnect has become the dominating factor in determining system performance in nanometer technologies. This book is dedicated to this important subject. The primary purpose of this monograph is to provide insight and intuition into layout analysis and optimization for interconnect in high speed, high complexity integrated circuits. In this monograph, the effects of wire size, spacing between wires, wire length, coupling length, load capacitance, rise time of the inputs, place of overlap (near driver or receiver side), frequency, shields, direction of the signals, and wire width for both the aggressors and the victim wires on system performance and reliability is thoroughly investigated. Also, parameters like driver strength has been considered as several recent studies considered the simultaneous device and interconnect sizing. Crosstalk noise, as well as the impact of coupling on aggressor delay is analyzed. The pulse width of the crosstalk noise, which is of similar importance for circuit performance as the peak amplitude, is also analyzed. We have considered more parameters that can affect the signal integrity and presented a practical intensive simulation results. throughout the literature, presenting a range of CAD algorithms and techniques for synthesizing and optimizing interconnect. The practical aspects of the algorithms and models are explained with sufficient detail. It deeply investigates the most two effective parameters in layout optimization, spacing and shield insertion, that can affect both capacitive and inductive noise. Noise models needed for layouts with multi-layer multi-crosscoupling segments are investigated. Different post-layout optimization techniques are explained with complexity analysis and benchmarks tests are provided.
The purpose of this book is to provide a practical approach to managing security in FPGA designs for researchers and practitioners in the electronic design automation (EDA) and FPGA communities, including corporations, industrial and government research labs, and academics. This book combines theoretical underpinnings with a practical design approach and worked examples for combating real world threats. To address the spectrum of lifecycle and operational threats against FPGA systems, a holistic view of FPGA security is presented, from formal top level speci?cation to low level policy enforcement mechanisms, which integrates recent advances in the ?elds of computer security theory, languages, compilers, and hardware. The net effect is a diverse set of static and runtime techniques that, working in coope- tion, facilitate the composition of robust, dependable, and trustworthy systems using commodity components. We wish to acknowledge the many people who helped us ensure the success of ourworkonrecon?gurablehardwaresecurity.Inparticular, wewishtothankAndrei Paun and Jason Smith of Louisiana Tech University for providing us with a Lin- compatible version of Grail+. We also wish to thank those who gave us comments on drafts of this book, including Marco Platzner of the University of Paderborn, and Ali Irturk and Jason Oberg of the University of California, San Diego. This research was funded in part by National Science Foundation Grant CNS-0524771 and NSF Career Grant CCF-0448654
Analog design still has, unfortunately, a flavor of art. Art can be beautiful. However, art in itself is difficult to teach to students and difficult to transfer from experienced analog designers to new trainee designers in companies. Structured Electronic Design: High-Performance Harmonic Oscillators and Bandgap References aims to systemize analog design. The use of orthogonalization of the design of the fundamental quality aspects (noise, distortion, and bandwidth) and hierarchy in the subsequent design steps, enables designers to achieve high-performance designs, in a relatively short time. As a result of the systematic design procedure, the effect of design decisions on the circuit performance is made clear. Additionally, the use of resources for reaching a specified performance is tracked. This book, therefore, describes the structured electronic design of high-performance harmonic oscillators and bandgap references. The structured design of harmonic oscillators includes the maximization of the carrier-to- noise ratio by means of tapping, i.e. an impedance adaption method for noise matching. The bandgap reference, a popular implementation of a voltage reference, is studied via the unusual concept of the linear combination of base-emitter voltages. The presented method leads to the design of high-performance references in CMOS and Bipolar technology. Using this concept, on a high level of abstraction the quality with respect to, for instance, noise and power-supply rejection can be identified. In this book, it is shown with several design examples that this method provides an excellent starting point for the design of high-performance bandgap references. Auxiliary to the harmonic-oscillator and bandgap reference design are the negative- feedback amplifiers. In this book the systematic design of the dynamic behavior is emphasized. By means of the identification of the dominant poles, it is possible to give an upper limit of the attainable bandwidth, even before the real frequency compensation is accomplished. Structured Electronic Design: High-Performance Harmonic Oscillators and Bandgap References is a valuable book for researchers and designers, as well as students in the field of analog design. It helps both the experienced and trainee designer to come to grips with the design of analog circuits. The presented method is illustrated by several well- described design examples.
High-Resolution IF-to-Baseband SigmaDelta ADC for Car Radios addresses the theory, system level design and circuit implementation of a high-resolution continuous-time IF-to-baseband quadrature SigmaDelta ADC. The target application of this ADC is in AM/FM/IBOC car radios. The ADC achieves a dynamic range of 118dB, which eliminates the need for an IF VGA or AM channel filter in car radios. The author is very well known within the Analog Circuits community.
This new text takes the reader from the very basics of analogue
electronics to an introduction of state-of-the-art techniques used
in the field. It is aimed at all engineering or science students
who wish to study the subject from its first principles, as well as
serving as a guide to more advanced topics for readers already
familiar with the subject.
Short turnaround has become critical in the design of electronic systems. Software- programmable components such as microprocessors and digital signal processors have been used extensively in such systems since they allow rapid design revisions. However, the inherent performance limitations of software-programmable systems mean that they are inadequate for high-performance designs. Designers thus turned to gate arrays as a solution. User-programmable gate arrays (field-programmable gate arrays, FPGAs) have recently emerged and are changing the way electronic systems are designed and implemented. The growing complexity of the logic circuits that can be packed onto an FPGA chip means that it has become important to have automatic synthesis tools that implement logic functions on these architectures. Logic Synthesis for Field-Programmable Gate Arrays describes logic synthesis for both look-up table (LUT) and multiplexor-based architectures, with a balanced presentation of existing techniques together with algorithms and the system developed by the authors. Audience: A useful reference for VLSI designers, developers of computer-aided design tools, and anyone involved in or with FPGAs.
Synthesis of Finite State Machines: Logic Optimization is the second in a set of two monographs devoted to the synthesis of Finite State Machines (FSMs). The first volume, Synthesis of Finite State Machines: Functional Optimization, addresses functional optimization, whereas this one addresses logic optimization. The result of functional optimization is a symbolic description of an FSM which represents a sequential function chosen from a collection of permissible candidates. Logic optimization is the body of techniques for converting a symbolic description of an FSM into a hardware implementation. The mapping of a given symbolic representation into a two-valued logic implementation is called state encoding (or state assignment) and it impacts heavily area, speed, testability and power consumption of the realized circuit. The first part of the book introduces the relevant background, presents results previously scattered in the literature on the computational complexity of encoding problems, and surveys in depth old and new approaches to encoding in logic synthesis. The second part of the book presents two main results about symbolic minimization; a new procedure to find minimal two-level symbolic covers, under face, dominance and disjunctive constraints, and a unified frame to check encodability of encoding constraints and find codes of minimum length that satisfy them. The third part of the book introduces generalized prime implicants (GPIs), which are the counterpart, in symbolic minimization of two-level logic, to prime implicants in two-valued two-level minimization. GPIs enable the design of an exact procedure for two-level symbolic minimization, based on a covering step which is complicated by the need to guarantee encodability of the final cover. A new efficient algorithm to verify encodability of a selected cover is presented. If a cover is not encodable, it is shown how to augment it minimally until an encodable superset of GPIs is determined. To handle encodability the authors have extended the frame to satisfy encoding constraints presented in the second part. The covering problems generated in the minimization of GPIs tend to be very large. Recently large covering problems have been attacked successfully by representing the covering table with binary decision diagrams (BDD). In the fourth part of the book the authors introduce such techniques and extend them to the case of the implicit minimization of GPIs, where the encodability and augmentation steps are also performed implicitly. Synthesis of Finite State Machines: Logic Optimization will be of interest to researchers and professional engineers who work in the area of computer-aided design of integrated circuits.
Power amplifiers and their performance lie at the heart of audio engineering and provide some challenging problems for the engineer. Ben Duncan's experience, as an audio consultant, analog electronics designer and author, give him an unique insight into this difficult but rewarding field. Linking analog electronics, acoustics, heat and music
technology; high-end hi-fi and professional PA and recording studio
use; theory, modelling and real-world practice; design and repair;
the old and the new, the mainstream and the specialised, this
comprehensive guide to power amps is a core reference for anyone in
the industry, and any interested onlookers.
In Test Pattern Generation using Boolean Proof Engines, we give an introduction to ATPG. The basic concept and classical ATPG algorithms are reviewed. Then, the formulation as a SAT problem is considered. As the underlying engine, modern SAT solvers and their use on circuit related problems are comprehensively discussed. Advanced techniques for SAT-based ATPG are introduced and evaluated in the context of an industrial environment. The chapters of the book cover efficient instance generation, encoding of multiple-valued logic, usage of various fault models, and detailed experiments on multi-million gate designs. The book describes the state of the art in the field, highlights research aspects, and shows directions for future work.
Application Specific Processors is written for use by engineers who are developing specialized systems (application specific systems). Traditionally, most high performance signal processors have been realized with application specific processors. The explanation is that application specific processors can be tailored to exactly match the (usually very demanding) application requirements. The result is that no processing power' is wasted for unnecessary capabilities and maximum performance is achieved. A disadvantage is that such processors have been expensive to design since each is a unique design that is customized to the specific application. In the last decade, computer-aided design systems have been developed to facilitate the development of application specific integrated circuits. The success of such ASIC CAD systems suggests that it should be possible to streamline the process of application specific processor design. Application Specific Processors consists of eight chapters which provide a mixture of techniques and examples that relate to application specific processing. The inclusion of techniques is expected to suggest additional research and to assist those who are faced with the requirement to implement efficient application specific processors. The examples illustrate the application of the concepts and demonstrate the efficiency that can be achieved via application specific processors. The chapters were written by members and former members of the application specific processing group at the University of Texas at Austin. The first five chapters relate to specific arithmetic which often is the key to achieving high performance in application specific processors. The next two chapters focus on signal processing systems, and the final chapter examines the interconnection of possibly disparate elements to create systems.
Advances in the state of the art mean the signal processing ICs of ever-increasing complexity are being introduced. While the typical portion of a large IC devoted to analog circuits has diminished, the performance of those surviving analog signal processing circuits remains vital and their design challenging. Moreover, the emerging high-definition TV technology has created a new area for IC development, one with formidable signal processing requirements. The antialiasing filters needed for one proposed HDTV decoder motivated the research documented in this book. Sharply selective filters place tight constraints on the permitted excess phase shifts of their constituent circuits. Combined with stringent requirements for low distortion at video frequencies, these constraints challenge the IC filter designer. Integrated Video-Frequency Continuous-Time Filters: High-Performance Realizations in BiCMOS deals with what is arguably the mainstay of analog signal processing circuits. Prominent applications in computer disk-drive read channels, video receivers, rf circuits, and antialiasing and reconstruction in data converters testifies to their importance. Moreover, they are excellent benchmarks for more general analog signal processors. Bipolar and MOSFET transistors, freely combined at the lowest circuit levels, provide the designer with an opportunity to develop potent variations on the standard idioms. The book considers the general principles of BiCMOS circuit design, through to a demanding design problem. This case-study approach allows a concrete discussion of the justification for and practical trade-offs of each design decision. Audience: A reference work for experienced IC designers and a text for advanced IC design students.
This book is motivated by the need to understand and predict the complex stress distributions, transfer mechanisms, warpage, and potential failures arising from the encapsulation of devices in plastic. Failures like delaminations, package cracking, and metal shift occur due to the build-up of residual stress and warpage in the packages because of the TCE mismatch between the package materials as the package cools from its molding temperature to room temperature. The correct use of finite element tools for these problems is emphasised. F.E. techniques are used to predict the internal package stress distribution and help explain the stress transfer mechanism between the die, die paddle, and plastic after molding. Out-of-plane shear stress components are shown to be responsible for experimentally observed metal shift patterns on the die surface. Delaminations dramatically alter the internal stress state within a package, increasing the tensile stress in the plastic and so the likelihood of plastic cracks, the stress on wire bonds, and the incidence of wire bond failure. The application of F.E. techniques to predict the post-mold warpage of both thermally enhanced PQFPs and TQFPs is described. Simulations of a thermally enhanced PQFP warpage based on standard modelling assumptions alone fail to predict either the magnitude or its direction correctly. The modelling assumptions need to be modified to include the chemical shrinkage of the molding compound to enable accurate predictions of package warpage to be made, particularly when the packages are asymmetric in structure. Microsystem packaging in both plastic and 3D package body styles is reviewed. Although microsystem packaging is derivedfrom IC packaging, additional requirements for microsystems, not common to IC packaging are highlighted. The assembly stresses on a novel microsystem, incorporating a micromachined silicon membrane pump integrated into a 3D plastic encapsulated vertical multichip module package (MCM-V), are analysed.
Wave Pipelining: Theory and CMOS Implementation provides a coherent presentation of the theory of wave pipelined operation of digital circuits and discusses practical design techniques for the realization of wave pipelined circuits in CMOS technology. Wave pipeling is a timing methodology used in digital systems to enhance performance while conserving the number of data registers used. This is achieved by applying new data to the inputs of a combinatorial logic block before the previous outputs are available. In contrast to conventional pipelining, system performance is limited by differences in maximum and minimum circuit delay rather than maximum circuit delays. Realization of practical systems using this technique requires accurate system level and circuit level timing analysis. At the system level, timing constraints identifying valid regions of operation for correct clocking of wave pipelined circuits are presented. Both single stage and multiple stage systems including feedback are considered. At the circuit level, since performance is determined by the maximum circuit delay difference, highly accurate estimates of both maximum and minimum delays are needed. Thus, timing analysis based on traditional gate delay models is not sufficient. For CMOS circuits, data dependent delay models considering the effect of simultaneous multiple input switchings must be used. An algorithm using these delay models for accurate analysis of small to medium sized circuits is implemented in a prototype timing analyzer, XTV. Results are given for a set of benchmark circuits.
Variability is one of the most challenging obstacles for IC design in the nanometer regime. In nanometer technologies, SRAM show an increased sensitivity to process variations due to low-voltage operation requirements, which are aggravated by the strong demand for lower power consumption and cost, while achieving higher performance and density. With the drastic increase in memory densities, lower supply voltages, and higher variations, statistical simulation methodologies become imperative to estimate memory yield and optimize performance and power. This book is an invaluable reference on robust SRAM circuits and statistical design methodologies for researchers and practicing engineers in the field of memory design. It combines state of the art circuit techniques and statistical methodologies to optimize SRAM performance and yield in nanometer technologies. Provides comprehensive review of state-of-the-art, variation-tolerant SRAM circuit techniques; Discusses Impact of device related process variations and how they affect circuit and system performance, from a design point of view; Helps designers optimize memory yield, with practical statistical design methodologies and yield estimation techniques.
This second edition provides comprehensive information on electromagnetic acoustic transducers (EMATs), from the theory and physical principles of EMATs to the construction of systems and their applications to scientific and industrial ultrasonic measurements on materials. The original version has been complemented with selected ideas on ultrasonic measurement that have emerged since the first edition was released. The book is divided into four parts: PART I offers a self-contained description of the basic elements of coupling mechanisms along with the practical designing of EMATs for various purposes. Several implementations to compensate for EMATs' low transfer efficiency are provided, along with useful tips on how to make an EMAT. PART II describes the principle of electromagnetic acoustic resonance (EMAR), which makes the most of EMATs' contactless nature and is the most successful amplification mechanism for precise measurements of velocity and attenuation. PART III applies EMAR to studying physical acoustics. New measurements have emerged with regard to four major subjects: in situ monitoring of dislocation behavior, determination of anisotropic elastic constants, pointwise elasticity mapping (RUM), and acoustic nonlinearity evolution. PART IV deals with a variety of individual issues encountered in industrial applications, for which the EMATs are believed to be the best solutions. This is proven by a number of field applications.
Explains how to use low power design in an automated design flow, and examine the design time and performance trade-offs Includes the latest tools and techniques for low power design applied in an ASIC design flow Focuses on low power in an automated design methodology, a much neglected area
Systematic Design of CMOS Switched-Current Bandpass Sigma-Delta
Modulators for Digital Communication Chips discusses architectures,
circuits and procedures for the optimum design of bandpass
sigma-delta (SD) A/D interfaces for mixed-signal chips in standard
CMOS technologies. The book differs from others in the very
detailed and in-depth coverage of switched-current (SI) errors,
which supports the design of high performance SI chips. The book
starts with a tutorial presentation of the fundamentals of bandpass
SD converters, their applications in communications and their most
common architectures. It then presents the basic SI building blocks
required for their implementation and analyzes in great detail the
operation of these blocks. The influence of SI errors on the
performance of the SD modulators (SDMs) is also studied. The
outcome is a unique set of models which can be employed with a
double purpose: namely, to support iterative procedures employed in
mapping specifications onto design parameters; and to allow for
accurate behavioural time-domain simulation using MATLAB-like
tools. The book is completed with two case studies corresponding to
modulators for AM digital radio receivers.
This book covers the fundamental principles behind the design of ultra-low power radios and how they can form networks to facilitate a variety of applications within healthcare and environmental monitoring, since they may operate for years off a small battery or even harvest energy from the environment. These radios are distinct from conventional radios in that they must operate with very constrained resources and low overhead. This book provides a thorough discussion of the challenges associated with designing radios with such constrained resources, as well as fundamental design concepts and practical approaches to implementing working designs. Coverage includes integrated circuit design, timing and control considerations, fundamental theory behind low power and time domain operation, and network/communication protocol considerations.
Operational Amplifier Speed and Accuracy Improvement proposes a new methodology for the design of analog integrated circuits. The usefulness of this methodology is demonstrated through the design of an operational amplifier. This methodology consists of the following iterative steps: description of the circuit functionality at a high level of abstraction using signal flow graphs; equivalent transformations and modifications of the graph to the form where all important parameters are controlled by dedicated feedback loops; and implementation of the structure using a library of elementary cells. Operational Amplifier Speed and Accuracy Improvement shows how to choose structures and design circuits which improve an operational amplifier's important parameters such as speed to power ratio, open loop gain, common-mode voltage rejection ratio, and power supply rejection ratio. The same approach is used to design clamps and limiting circuits which improve the performance of the amplifier outside of its linear operating region, such as slew rate enhancement, output short circuit current limitation, and input overload recovery.
"As chip size and complexity continues to grow exponentially, the
challenges of functional verification are becoming a critical issue
in the electronics industry. It is now commonly heard that logical
errors missed during functional verification are the most common
cause of chip re-spins, and that the costs associated with
functional verification are now outweighing the costs of chip
design. To cope with these challenges engineers are increasingly
relying on new design and verification methodologies and languages.
Transaction-based design and verification, constrained random
stimulus generation, functional coverage analysis, and
assertion-based verification are all techniques that advanced
design and verification teams routinely use today. Engineers are
also increasingly turning to design and verification models based
on C/C++ and SystemC in order to build more abstract, higher
performance hardware and software models and to escape the
limitations of RTL HDLs. This new book, Advanced Verification
Techniques, provides specific guidance for these advanced
verification techniques. The book includes realistic examples and
shows how SystemC and SCV can be applied to a variety of advanced
design and verification tasks."
Asynchronous Circuit Design for VLSI Signal Processing is a collection of research papers on recent advances in the area of specification, design and analysis of asynchronous circuits and systems. This interest in designing digital computing systems without a global clock is prompted by the ever growing difficulty in adopting global synchronization as the only efficient means to system timing. Asynchronous circuits and systems have long held interest for circuit designers and researchers alike because of the inherent challenge involved in designing these circuits, as well as developing design techniques for them. The frontier research in this area can be traced back to Huffman's publications The Synthesis of Sequential Switching Circuits' in 1954 followed by Unger's book, Asynchronous Sequential Switching Circuits' in 1969 where a theoretical foundation for handling logic hazards was established. In the last few years a growing number of researchers have joined force in unveiling the mystery of designing correct asynchronous circuits, and better yet, have produced several alternatives in automatic synthesis and verification of such circuits. This collection of research papers represents a balanced view of current research efforts in the design, synthesis and verification of asynchronous systems.
With the increased efforts of the analog design community to integrate analog high-frequency front-ends for telecommunications, there has been heightened interest in the behaviour of nonlinear circuits since this can cause considerable degradation of signals. In analog integrated circuits at lower frequencies, such as filters, nonlinear behaviour limits the dynamic range. Analog integrated circuit designers often lack insight into nonlinear circuit behaviour. Indeed, designers are trained to reason in linear or linearized circuits but not in nonlinear ones. Numerical circuit simulations of nonlinear circuit behavior do not provide enough insight to the designer. Distortion Analysis of Analog Integrated Circuits, with a foreword by Robert G. Meyer, provides both qualitative and quantitative insight into the nonlinear behavior of analog integrated circuits at low and high frequencies. General techniques to suppress nonlinear behavior such as pre-distortion, linear and nonlinear feedback are explained in detail and illustrated with realistic examples. In this way the book fills the gap between the theory of nonlinear systems and practical analog integrated circuits. Distortion Analysis of Analog Integrated Circuits provides the reader with an in-depth analysis of elementary transistor stages, both CMOS and bipolar, as well as an analysis of several larger circuits. Hereby use is made of advanced transistor models that are also discussed in the book. The analyses take into account many more effects than in existing publications, thanks to the use of a calculation method that yields closed-form expressions for nonlinear behavior. These expressions are interpreted and illustrated withrealistic numerical examples. Distortion Analysis of Analog Integrated Circuits is essential reading for practicing analog and mixed-signal design engineers and researchers in the field. It is also suitable as a text for an advanced course on the subject. From the foreword: I am sure that the analog circuit design community will [...] welcome this work by Dr. Wambacq and Prof. Sansen as a major contribution to the analog circuit design literature in the area of distortion analysis of electronic circuits. I am personally looking forward to having a copy readily available for reference when designing integrated circuits for communication systems.' Robert G. Meyer, Professor, Electrical Engineering and Computer Sciences, University of California, Berkeley.
This book presents a new optimization flow for quantum circuits realization. At the reversible level, optimization algorithms are presented to reduce the quantum cost. Then, new mapping approaches to decompose reversible circuits to quantum circuits using different quantum libraries are described. Finally, optimization techniques to reduce the quantum cost or the delay are applied to the resulting quantum circuits. Furthermore, this book studies the complexity of reversible circuits and quantum circuits from a theoretical perspective.
Debugging becomes more and more the bottleneck to chip design productivity, especially while developing modern complex integrated circuits and systems at the Electronic System Level (ESL). Today, debugging is still an unsystematic and lengthy process. Here, a simple reporting of a failure is not enough, anymore. Rather, it becomes more and more important not only to find many errors early during development but also to provide efficient methods for their isolation. In Debugging at the Electronic System Level the state-of-the-art of modeling and verification of ESL designs is reviewed. There, a particular focus is taken onto SystemC. Then, a reasoning hierarchy is introduced. The hierarchy combines well-known debugging techniques with whole new techniques to improve the verification efficiency at ESL. The proposed systematic debugging approach is supported amongst others by static code analysis, debug patterns, dynamic program slicing, design visualization, property generation, and automatic failure isolation. All techniques were empirically evaluated using real-world industrial designs. Summarized, the introduced approach enables a systematic search for errors in ESL designs. Here, the debugging techniques improve and accelerate error detection, observation, and isolation as well as design understanding. |
![]() ![]() You may like...
Advances in Research and Development…
Maurice H. Francombe, John L. Vossen
Hardcover
R1,288
Discovery Miles 12 880
Modern Filter Design - Active RC and…
Mohammed S. Ghausi, Kenneth R Laker
Hardcover
R2,893
Discovery Miles 28 930
Handbook of Research on Emerging Designs…
Jamal Zbitou, Mostafa Hefnawi, …
Hardcover
R8,709
Discovery Miles 87 090
|