![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Circuits & components
Debugging becomes more and more the bottleneck to chip design productivity, especially while developing modern complex integrated circuits and systems at the Electronic System Level (ESL). Today, debugging is still an unsystematic and lengthy process. Here, a simple reporting of a failure is not enough, anymore. Rather, it becomes more and more important not only to find many errors early during development but also to provide efficient methods for their isolation. In Debugging at the Electronic System Level the state-of-the-art of modeling and verification of ESL designs is reviewed. There, a particular focus is taken onto SystemC. Then, a reasoning hierarchy is introduced. The hierarchy combines well-known debugging techniques with whole new techniques to improve the verification efficiency at ESL. The proposed systematic debugging approach is supported amongst others by static code analysis, debug patterns, dynamic program slicing, design visualization, property generation, and automatic failure isolation. All techniques were empirically evaluated using real-world industrial designs. Summarized, the introduced approach enables a systematic search for errors in ESL designs. Here, the debugging techniques improve and accelerate error detection, observation, and isolation as well as design understanding.
This book gives a comprehensive introduction to the design challenges of MPSoC platforms, focusing on early design space exploration. It defines an iterative methodology to increase the abstraction level so that evaluation of design decisions can be performed earlier in the design process. These techniques enable exploration on the system level before undertaking time- and cost-intensive development.
Temperature has been always considered as an appreciable magnitude to detect failures in electric systems. Abnormal status of this variable, both too high and too low, is sign of abnormal behavior in electronic systems. In Thermal Testing of Integrated Circuits the authors present the feasibility to consider temperature as an observable for testing purposes. The coupling of circuits through heat is inherent to the solid-state nature and the inspection of temperature does not interact with Under Test Circuits or Systems, something that does not happen when voltage or current observable are used. In the book the basis of heat propagation, heat conducting mechanisms and temperature sensitivity of semiconductors are focused with a full coverage of the state of the art. We usually have the idea that all the heating processes are slow, which is true in the macroscopic world, but is not in the case of integrated circuits where the reduced size and amount of material and the really high conductivity of substrates make the thermal testing a promising technique. CMOS and BICMOS temperature sensors for built-in thermal testing are presented in the book. The application of temperature as testing magnitude for both on-line and off-line, analog or digital, on-chip or off-chip are considered. The temperature sensing has an inherent directional capability that can be used as an element for localizing failures, so the technique has interesting diagnosis capabilities as well.
Written by an author with extensive practical experience of applying the techniques, this book is aimed at advanced students and researchers as well as professional design engineers. The text focuses on finite impulse response (FIR) filter structures and on infinite impulse response (IIR) SC filters which simulate classical lossless circuits . It includes coverage of the so-called pseudo-lossless SC circuits and especially multirate SC circuits with recovery of the effective pseudo-energy. There is also discussion of other promising approaches to the design of SC circuits; special attention has been paid to the analysis of multirate and multiphase SC circuits using signal flow graphs.
This book describes the newest implementations of integrated photodiodes fabricated in nanometer standard CMOS technologies. It also includes the required fundamentals, the state-of-the-art, and the design of high-performance laser drivers, transimpedance amplifiers, equalizers, and limiting amplifiers fabricated in nanometer CMOS technologies. This book shows the newest results for the performance of integrated optical receivers, laser drivers, modulator drivers and optical sensors in nanometer standard CMOS technologies. Nanometer CMOS technologies rapidly advanced, enabling the implementation of integrated optical receivers for high data rates of several Giga-bits per second and of high-pixel count optical imagers and sensors. In particular, low cost silicon CMOS optoelectronic integrated circuits became very attractive because they can be extensively applied to short-distance optical communications, such as local area network, chip-to-chip and board-to-board interconnects as well as to imaging and medical sensors.
Provides coverage of the most efficient and effective methods of network analysis optimization and synthesis. A step-by-step guide to every aspect of the RF and microwave circuit design process - starting with a set of specifications and ending with hardware that performs as modeled the first time.
This revised and extended second edition covers problems concerning the design and realization of digital control algorithms for power electronics circuits using digital signal processing (DSP) methods. This book discusses signal processing, starting from analog signal acquisition, through conversion to digital form, methods of filtration and separation, and ending with pulse control of output power transistors. The book is focused on two applications for the considered methods of digital signal processing, a three-phase shunt active power filter and a digital class-D audio power amplifier. The book bridges the gap between power electronics and digital signal processing. Many control algorithms and circuits for power electronics in the current literature are described using analog transmittances. This may not always be acceptable, especially if half of the sampling frequencies and half of the power transistor switching frequencies are close to the band of interest. Therefore in this book, a digital circuit is treated as a digital circuit with its own peculiar characteristics, rather than an analog circuit. This helps to avoid errors and instability. This edition includes a new chapter dealing with selected problems of simulation of power electronics systems together with digital control circuits. The book includes numerous examples using MATLAB and PSIM programs.
This book focuses on the development of design techniques and methodologies for 60-GHz and E-band power amplifiers and transmitters at device, circuit and layout levels. The authors show the recent development of millimeter-wave design techniques, especially of power amplifiers and transmitters, and presents novel design concepts, such as "power transistor layout" and "4-way parallel-series power combiner", that can enhance the output power and efficiency of power amplifiers in a compact silicon area. Five state-of-the-art 60-GHz and E-band designs with measured results are demonstrated to prove the effectiveness of the design concepts and hands-on methodologies presented. This book serves as a valuable reference for circuit designers to develop millimeter-wave building blocks for future 5G applications.
"Memory Mass Storage" describes the fundamental storage technologies, like Semiconductor, Magnetic, Optical and Uncommon, detailing the main technical characteristics of the storage devices. It deals not only with semiconductor and hard disk memory, but also with different ways to manufacture and assembly them, and with their application to meet market requirements. It also provides an introduction to the epistemological issues arising in defining the process of remembering, as well as an overview on human memory, and an interesting excursus about biological memories and their organization, to better understand how the best memory we have, our brain, is able to imagine and design memory."
As integrated circuit (IC) feature sizes scaled below a quarter of a micron, thereby defining the deep submicron (DSM) era, there began a gradual shift in the impact on performance due to the metal interconnections among the active circuit components. Once viewed as merely parasitics in terms of their relevance to the overall circuit behavior, the interconnect can now have a dominant impact on the IC area and performance. Beginning in the late 1980's there was significant research toward better modeling and characterization of the resistance, capacitance and ultimately the inductance of on-chip interconnect. IC Interconnect Analysis covers the state-of-the-art methods for modeling and analyzing IC interconnect based on the past fifteen years of research. This is done at a level suitable for most practitioners who work in the semiconductor and electronic design automation fields, but also includes significant depth for the research professionals who will ultimately extend this work into other areas and applications. IC Interconnect Analysis begins with an in-depth coverage of delay metrics, including the ubiquitous Elmore delay and its many variations. This is followed by an outline of moment matching methods, calculating moments efficiently, and Krylov subspace methods for model order reduction. The final two chapters describe how to interface these reduced-order models to circuit simulators and gate-level timing analyzers respectively. IC Interconnect Analysis is written for CAD tool developers, IC designers and graduate students.
This book describes the physical operation of the Tunnel Field-effect Transistor (TFET) and circuits built with this device. Whereas the majority of publications on TFETs describe in detail the device, its characteristics, variants and performance, this will be the first book addressing TFET integrated circuits (TFET ICs). The authors describe the peculiarities of TFET ICs and their differences with MOSFETs. They also develop and analyze a number of logic circuits and memories. The discussion also includes complex circuits combining CMOS and TFET, as well as a potential fabrication process in Silicon.
Over the past decade there has been a dramatic change in the role played by design automation for electronic systems. Ten years ago, integrated circuit (IC) designers were content to use the computer for circuit, logic, and limited amounts of high-level simulation, as well as for capturing the digitized mask layouts used for IC manufacture. The tools were only aids to design-the designer could always find a way to implement the chip or board manually if the tools failed or if they did not give acceptable results. Today, however, design technology plays an indispensable role in the design ofelectronic systems and is critical to achieving time-to-market, cost, and performance targets. In less than ten years, designers have come to rely on automatic or semi automatic CAD systems for the physical design ofcomplex ICs containing over a million transistors. In the past three years, practical logic synthesis systems that take into account both cost and performance have become a commercial reality and many designers have already relinquished control ofthe logic netlist level of design to automatic computer aids. To date, only in certain well-defined areas, especially digital signal process ing and telecommunications. have higher-level design methods and tools found significant success. However, the forces of time-to-market and growing system complexity will demand the broad-based adoption of high-level, automated methods and tools over the next few years."
Dynamic power management is a design methodology aiming at controlling performance and power levels of digital circuits and systems, with the goal of extending the autonomous operation time of battery-powered systems, providing graceful performance degradation when supply energy is limited, and adapting power dissipation to satisfy environmental constraints. Dynamic Power Management: Design Techniques and CAD Tools addresses design techniques and computer-aided design solutions for power management. Different approaches are presented and organized in an order related to their applicability to control-units, macro-blocks, digital circuits and electronic systems, respectively. All approaches are based on the principle of exploiting idleness of circuits, systems, or portions thereof. They involve both the detection of idleness conditions and the freezing of power-consuming activities in the idle components. The book also describes some approaches to system-level power management, including Microsoft's OnNow architecture and the Advanced Configuration and Power Management' standard proposed by Intel, Microsoft and Toshiba. These approaches migrate power management to the software layer running on hardware platforms, thus providing a flexible and self-configurable solution to adapting the power/performance tradeoff to the needs of mobile (and fixed) computing and communication. Dynamic Power Management: Design Techniques and CAD Tools is of interest to researchers and developers of computer-aided design tools for integrated circuits and systems, as well as to system designers.
Digital phase locked loops are critical components of many communication, signal processing and control systems. This exciting new book covers various types of digital phase lock loops. It presents a comprehensive coverage of a new class of digital phase lock loops called the time delay tanlock loop (TDTL). It also details a number of architectures that improve the performance of the TDTL through adaptive techniques that overcome the conflicting requirements of the locking rage and speed of acquisition. These requirements are of paramount importance in many applications including wireless communications, consumer electronics and others. Digital Phase Lock Loops then illustrates the process of converting the TDTL class of digital phase lock loops for implementation on an FPGA-based reconfigurable system. These devices are being utilized in software-defined radio, DSP-based designs and many other communication and electronic systems to implement complex high-speed algorithms. Their flexibility and reconfigurability facilitate rapid prototyping, on-the-fly upgradeability, and code reuse with minimum effort and complexity. from the reconfigurable implementations are compared with those obtained through simulations with MATLAB/Simulink. The material in this book will be valuable to researchers, graduate students, and practicing engineers.
The extensive use of little known electronic principles provides something like the Science of Electronics supplementing the Art of Electronics without involvement of too much theory. Whereas art can only be acquired by doing, the knowledge provided by science can be acquired from books. The ready availability of integrated circuits for practically any application reduces the art of electronics to the art of interfacing these integrated components. The practical knowledge required for that art can only be acquired by doing and not by reading. However, it takes a lot of knowledge to select the best integrated component for achieving a specific goal. Such knowledge is provided in this book. By using a holistic approach in the understanding of the various circuits and by taking ample advantage of the duality between the electrical quantities voltage and current, the understanding of the properties of electronic circuits is made easier. Besides, this approach reduces the amount of mathematics needed for a deeper understanding. Thus, this book is appropriate for scholars at the advanced undergraduate level. In particular, the important aspects of positive and negative feedback in circuits are presented in a compact way by introducing the reverse closed-loop-gain. It is quite clear that a single book cannot cover all aspects of both analog and digital electronics, the latter comprising all circuits needed for data manipulation in digital computers- which is a field in itself.
This book includes a set of rigorously reviewed world-class manuscripts addressing and detailing state-of-the-art research projects in the areas of Engineering Education, Instructional Technology, Assessment, and E-learning. The book presents selected papers form the conference proceedings of the International Conference on Engineering Education, Instructional Technology, Assessment, and E-learning (EIAE 2006). All aspects of the conference were managed on-line.
Device and Circuit Cryogenic Operation for Low Temperature Electronics is a first in reviewing the performance and physical mechanisms of advanced devices and circuits at cryogenic temperatures that can be used for many applications. The first two chapters cover bulk silicon and SOI MOSFETs. The electronic transport in the inversion layer, the influence of impurity freeze-out, the special electrical properties of SOI structures, the device reliability and the interest of a low temperature operation for the ultimate integration of silicon down to nanometer dimensions are described. The next two chapters deal with Silicon-Germanium and III-V Heterojunction Bipolar Transistors, as well as III-V High Electron Mobility Transistors (HEMT). The basic physics of the SiGe HBT and its unique cryogenic capabilities, the optimization of such bipolar devices, and the performance of SiGe HBT BiCMOS technology at liquid nitrogen temperature are examined. The physical effects in III-V semiconductors at low temperature, the HEMT and HBT static, high frequency and noise properties, and the comparison of various cooled III-V devices are also addressed. The next chapter treats quantum effect devices made of silicon materials. The major quantum effects at low temperature, quantum wires, quantum dots as well as single electron devices and applications are investigated. The last chapter overviews the performances of cryogenic circuits and their applications. The low temperature properties and performance of inverters, multipliers, adders, operational amplifiers, memories, microprocessors, imaging devices, circuits and systems, sensors and read-out circuits are analyzed. Device and Circuit Cryogenic Operation for Low Temperature Electronics is useful for researchers, engineers, Ph.D. and M.S. students working in the field of advanced electron devices and circuits, new semiconductor materials, and low temperature electronics and physics.
Conceptual Design of Multichip Modules and Systems treats activities which take place at the conceptual and specification level of the design of complex multichip systems. These activities include the formalization of design knowledge (information modeling), tradeoff analysis, partitioning, and decision process capture. All of these functions occur prior to the traditional CAD activities of synthesis and physical design. Inherent in the design of electronic modules are tradeoffs which must be understood before feasible technology, material, process, and partitioning choices can be selected. The lack of a complete set of technology information is an especially serious problem in the packaging and interconnect field since the number of technologies, process, and materials is substantial and selecting optimums is arduous and non-trivial if one truly wants a balance in cost and performance. Numerous tradeoff and design decisions have to be made intelligently and quickly at the beginning of the design cycle before physical design work begins. These critical decisions, made within the first 10% of the total design cycle, ultimately define up to 80% of the final product cost. Conceptual Design of Multichip Modules and Systems lays the groundwork for concurrent estimation level analysis including size, routing, electrical performance, thermal performance, cost, reliability, manufacturability, and testing. It will be useful both as a reference for system designers and as a text for those wishing to gain a perspective on the nature of packaging and interconnect design, concurrent engineering, computer-aided design, and system synthesis.
Chemical mechanical planarization, or chemical mechanical polishing as it is simultaneously referred to, has emerged as one of the critical processes in semiconductor manufacturing and in the production of other related products and devices, MEMS for example. Since its introduction some 15+ years ago CMP, as it is commonly called, has moved steadily into new and challenging areas of semiconductor fabrication. Demands on it for consistent, efficient and cost-effective processing have been steady. This has continued in the face of steadily decreasing feature sizes, impressive increases in wafer size and a continuing array of new materials used in devices today. There are a number of excellent existing references and monographs on CMP in circulation and we defer to them for detailed background information. They are cited in the text. Our focus here is on the important area of process mod els which have not kept pace with the tremendous expansion of applications of CMP. Preston's equation is a valuable start but represents none of the subtleties of the process. Specifically, we refer to the development of models with sufficient detail to allow the evaluation and tradeoff of process inputs and parameters to assess impact on quality or quantity of production. We call that an "integrated model" and, more specifically, we include the important role of the mechanical elements of the process."
Music Projects contains a collection of projects based on music applications. Components are widely available and the circuits form the basis for further experiments. Circuit diagrams are provided, as are photographs of the main circuits. Parts lists are also given. Robert Penfold's reputation for innovative circuit designs and
well-thought out projects is firmly established. His work has been
featured regularly in the popular 'Bob's Mini Circuits' section of
Electronics, the Maplin magazine. This is a collection of his best
ideas from the magazine. Projects include an accented metronome, a
tremolo unit, a guitar compressor, a bass fuzz, and a chorus
unit.
In this book new experimental investigations of properties of Josephson junctions and systems are explored with the help of recent developments in superconductivity. The theory of the Josephson effect is presented taking into account the influence of multiband and anisotropy effects in new superconducting compounds. Anharmonicity effects in current-phase relation on Josephson junctions dynamics are discussed. Recent studies in analogue and digital superconductivity electronics are presented. Topics of special interest include resistive single flux quantum logic in digital electronics. Application of Josephson junctions in quantum computing as superconducting quantum bits are analyzed. Particular attention is given to understanding chaotic behaviour of Josephson junctions and systems. The book is written for graduate students and researchers in the field of applied superconductivity.
This book introduces advanced thyristor-based shunt hybrid active power filters (HAPFs) for power quality improvement in power grids, which are characterized by a low dc-link operating voltage and a wide compensation range. This means they can overcome the high dc-link voltage requirement of conventional active power filters and the narrow compensation range problem of LC-coupling hybrid active power filters. Consisting of 10 chapters, the book discusses the principle, design, control and hardware implementation of thyristor-based hybrid active power filters. It covers 1) V-I characteristics, cost analysis, power loss and reliability studies of different power filters; 2) mitigation of the harmonic injection technique for thyristor-controlled parts; 3) nonlinear pulse width modulation (PWM) control; 4) parameter design methods; 5) minimum inverter capacity design; 6) adaptive dc-link voltage control; 7) unbalanced control strategy; 8) selective compensation techniques; and 9) the hardware prototype design of thyristor-based HAPFs, verified by simulation and experimental results. It enables readers to gain an understanding of the basic power electronics techniques applied in power systems as well as the advanced techniques for controlling, implementing and designing advanced thyristor-based HAPFs.
A review of the electrical properties, performance and physical mechanisms of the main silicon-on-insulator (SOI) materials and devices. Particular attention is paid to the reliability of SOI structures operating in harsh conditions. The first part of the book deals with material technology and describes the SIMOX and ELTRAN technologies, the smart-cut technique, SiCOI structures and MBE growth. The second part covers reliability of devices operating under extreme conditions, with an examination of low and high temperature operation of deep submicron MOSFETs and novel SOI technologies and circuits, SOI in harsh environments and the properties of the buried oxide. The third part deals with the characterization of advanced SOI materials and devices, covering laser-recrystallized SOI layers, ultrashort SOI MOSFETs and nanostructures, gated diodes and SOI devices produced by a variety of techniques. The last part reviews future prospects for SOI structures, analyzing wafer bonding techniques, applications of oxidized porous silicon, semi-insulating silicon materials, self-organization of silicon dots and wires on SOI and some new physical phenomena.
Stochastic Resonance: Theory and Applications deals with the theory of noise-added systems and in particular with Stochastic Resonance, a quite novel theory that was introduced in the 1980s to provide better understanding of some natural phenomena (e.g. ice age recurrence). Following the very first works, a number of different applications to both natural and human-produced phenomena were proposed. The book aims to improve the understanding of noise-based techniques and to focus on practical applications of this class of phenomena (an aspect that has been very poorly investigated up to now). Based on this objective, the book is roughly divided into two parts. The first part deals with the essential theory of noise-added systems and in particular a new approach to noise-added techniques that allows a number of strategies proposed in previous years to be unified. The proposed approach also allows real-time control of the noise characteristics, assuring optimal system performance. In the second part a large number of applications are described in detail in the field of electric and electronic devices, with the aim of allowing readers to build their own experimental set. The book comes with a diskette of educational software that the authors developed. Stochastic Resonance: Theory and Applications is an invaluable reference for students, researchers and engineering professionals working in the fields of electric and electronic measurements, electronics and signal theory.
As embedded systems become more complex, designers face a number of challenges at different levels: they need to boost performance, while keeping energy consumption as low as possible, they need to reuse existent software code, and at the same time they need to take advantage of the extra logic available in the chip, represented by multiple processors working together. This book describes several strategies to achieve such different and interrelated goals, by the use of adaptability. Coverage includes reconfigurable systems, dynamic optimization techniques such as binary translation and trace reuse, new memory architectures including homogeneous and heterogeneous multiprocessor systems, communication issues and NOCs, fault tolerance against fabrication defects and soft errors, and finally, how one can combine several of these techniques together to achieve higher levels of performance and adaptability. The discussion also includes how to employ specialized software to improve this new adaptive system, and how this new kind of software must be designed and programmed. |
![]() ![]() You may like...
Fuzzy Transforms for Image Processing…
Ferdinando Di Martino, Salvatore Sessa
Hardcover
R4,237
Discovery Miles 42 370
Handbook of Research on Automated…
Mrutyunjaya Panda, Harekrishna Misra
Hardcover
R8,424
Discovery Miles 84 240
Surveillance Technologies and Early…
Ali Serhan Koyuncugil, Nermin Ozgulbas
Hardcover
R4,969
Discovery Miles 49 690
Resonant Tunneling - Quantum Waveguides…
Lev Baskin, Pekka Neittaanmaki, …
Hardcover
R4,639
Discovery Miles 46 390
|