![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Circuits & components
nalog circuits are fascinating artifacts. They manipulate signals whose informa- Ationcontentisrichcomparedtodigitalsignalsthatcarryminimalamountofinf- mation;theyaredelicateinthatanyperturbationduetoparasiticelements, todelays, to interactionswithotherelementsandwiththeenvironmentmaycauseasigni?cantloss ofinformation. Thedif?cultyindealingwiththeseartifactsistoprotectthemfromall possibleattacks, evenminorones, fromthephysicalworld. Theironyisthattheyare oftenusedtofunnelinformationfromandtothephysicalworldtoandfromtheabstr- tionofthedigitalworldandforthisfunction, theyareirreplaceable. Nowonderthen that analog designers form a club of extraordinary gentlemen where art (or magic?) ratherthanscienceisthesharedtrade. Theyaredif?culttotrainsinceexperienceand intuitionarethetraitsthat characterize them. Andthey have dif?cultiesinexplaining what is the process they use to reach satisfactory results. Tools used for design (s- ulation) are mainly replacing the test benches of an experimental lab. However, the growing complexity of the integrated systems being designed today together with the increasing fragility of analog components brought about by shrinking geometries and reducedpowerconsumptionisposingseverechallengestotraditionalanalogdesigners to produce satisfactory results in a short time. At the same time, the need for expe- enced analog designers has increased constantly since almost all designs, because of integration, docontainanalogcomponents. Thissituationhascreatedastronginterest in developing design methodologies and supporting tools that are based on rigorous, mathematically literate, approaches. Doing so will make it possible to leverage the expertiseofseasonedanalogdesignersandtotrainnewgenerationsfasterandbetter. Inthepast, severalattemptshavebeenmadeinacademia andindustrytocreatethese methodologies and to extend the set of tools available. They have had questionable acceptance in the analog design community. However, recently, a ?urry of start-ups andincreasedinvestmentbyEDAcompaniesinnoveltoolssignalasigni?cantchange inmarketattentiontotheanalogdomain. Ipersonallybelievethattosubstantially- prove quality and design time, tools are simply insuf?cient. A design methodology based on a hierarchy of abstraction layers, successive re?nement between two ad- cent layers, and extensive veri?cation at every layer is necessary. To do so, we need to build theories and models that have strong mathematical foundations. The analog design technology community is as strong as it has ever be
One of the main trends of microelectronics is toward design for integrated systems, i.e., system-on-a-chip (SoC) or system-on-silicon (SoS). Due to this development, design techniques for mixed-signal circuits become more important than before. Among other devices, analog-to-digital and digital-to-analog converters are the two bridges between the analog and the digital worlds. Besides, low-power design technique is one of the main issues for embedded systems, especially for hand-held applications. Modular Low-Power, High-Speed CMOS Analog-to-Digital Converter for Embedded Systems aims at design techniques for low-power, high-speed analog-to-digital converter processed by the standard CMOS technology. Additionally this book covers physical integration issues of A/D converter integrated in SoC, i.e., substrate crosstalk and reference voltage network design.
Innovations and Advanced Techniques in Computer and Information Sciences and Engineering includes a set of rigorously reviewed world-class manuscripts addressing and detailing state-of-the-art research projects in the areas of Computer Science, Computer Engineering and Information Sciences. Innovations and Advanced Techniques in Computer and Information Sciences and Engineering includes selected papers form the conference proceedings of the International Conference on Systems, Computing Sciences and Software Engineering (SCSS 2006) which was part of the International Joint Conferences on Computer, Information and Systems Sciences and Engineering (CISSE 2006). All aspects of the conference were managed on-line; not only the reviewing, submissions and registration processes; but also the actual conference. Conference participants - authors, presenters and attendees - only needed an internet connection and sound available on their computers in order to be able to contribute and participate in this international ground-breaking conference. The on-line structure of this high-quality event allowed academic professionals and industry participants to contribute work and attend world-class technical presentations based on rigorously refereed submissions, live, without the need for investing significant travel funds or time out of the office. Suffice to say that CISSE received submissions from more than 70 countries, for whose researchers, this opportunity presented a much more affordable, dynamic and well-planned event to attend and submit their work to, versus a classic, on-the-ground conference. The CISSE conference audio room provided superb audio even over low speed internet connections, the ability to display PowerPoint presentations, and cross-platform compatibility (the conferencing software runs on Windows, Mac, and any other operating system that supports Java). In addition, the conferencing system allowed for an unlimited number of participants, which in turn granted CISSE the opportunity to allow all participants to attend all presentations, as opposed to limiting the number of available seats for each session.
This book describes for readers a methodology for dynamic power estimation, using Transaction Level Modeling (TLM). The methodology exploits the existing tools for RTL simulation, design synthesis and SystemC prototyping to provide fast and accurate power estimation using Transaction Level Power Modeling (TLPM). Readers will benefit from this innovative way of evaluating power on a high level of abstraction, at an early stage of the product life cycle, decreasing the number of the expensive design iterations.
"Long Wave Polar Modes in Semiconductor Heterostructures" is
concerned with the study of polar optical modes in semiconductor
heterostructures from a phenomenological approach and aims to
simplify the model of lattice dynamics calculations. The book
provides useful tools for performing calculations relevant to
anyone who might be interested in practical applications. The main focus of "Long Wave Polar Modes in Semiconductor
Heterostructures" is planar heterostructures (quantum wells or
barriers, superlattices, double barrier structures etc) but there
is also discussion on the growing field of quantum wires and dots.
Also to allow anyone reading the book to apply the techniques
discussed for planar heterostructures, the scope has been widened
to include cylindrical and spherical geometries. The book is intended as an introductory text which guides the reader through basic questions and expands to cover state-of-the-art professional topics. The book is relevant to experimentalists wanting an instructive presentation of a simple phenomenological model and theoretical tools to work with and also to young theoreticians by providing discussion of basic issues and the basis of advanced theoretical formulations. The book also provides a brief respite on the physics of piezoelectric waves as a coupling to polar optical modes.
Wireless ad hoc networks, mobile or static, have special resource requirements and different topology features, which make them different from classic computer networks in resource management, routing, media access control, and QoS provisioning. The book presents papers written by distinguished researchers in the field and focuses on the theoretical and experimental study of the following advanced research topics: security and trust, broadcasting and multicasting; power control and energy efficiency, and QoS provisioning. This book is a great reference tool for graduate students, researchers, and mathematicians interested in studying mobile ad hoc and sensor networks.
Yield and reliability of memories have degraded with device and voltage scaling in the nano-scale era, due to ever-increasing hard/soft errors and device parameter variations. This book systematically describes these yield and reliability issues in terms of mathematics and engineering, as well as an array of repair techniques, based on the authors' long careers in developing memories and low-voltage CMOS circuits. Nanoscale Memory Repair gives a detailed explanation of the various yield models and calculations, as well as various, practical logic and circuits that are critical for higher yield and reliability.
The modern wireless communication industry has put great demands on circuit designers for smaller, cheaper transceivers in the gigahertz frequency range. One tool which has assisted designers in satisfying these requirements is the use of on-chip inductiveelements (inductors and transformers) in silicon (Si) radio-frequency (RF) integrated circuits (ICs). These elements allow greatly improved levels of performance in Si monolithic low-noise amplifiers, power amplifiers, up-conversion and down-conversion mixers and local oscillators. Inductors can be used to improve the intermodulation distortion performance and noise figure of small-signal amplifiers and mixers. In addition, the gain of amplifier stages can be enhanced and the realization of low-cost on-chip local oscillators with good phase noise characteristics is made feasible. In order to reap these benefits, it is essential that the IC designer be able to predict and optimize the characteristics of on-chip inductiveelements. Accurate knowledge of inductance values, quality factor (Q) and the influence of ad- cent elements (on-chip proximity effects) and substrate losses is essential. In this book the analysis, modeling and application of on-chip inductive elements is considered. Using analyses based on Maxwells equations, an accurate and efficient technique is developed to model these elements over a wide frequency range. Energy loss to the conductive substrate is modeled through several mechanisms, including electrically induced displacement and conductive c- rents and by magnetically induced eddy currents. These techniques have been compiled in a user-friendly software tool ASITIC (Analysis and Simulation of Inductors and Transformers for Integrated Circuits).
This book introduces a novel design methodology which can significantly reduce the ASIP development effort through high degrees of design automation. The key elements of this new design methodology are a powerful application profiler and an automated instruction-set customization tool which considerably lighten the burden of mapping a target application to an ASIP architecture in the initial design stages. The book includes several design case studies with real life embedded applications to demonstrate how the methodology and the tools can be used in practice for accelerating the overall ASIP design process.
The electronic circuit is a proud child of twentieth century natural science. In a hundred short years it has developed to the point that it now enhances nearly every aspect of human life. Yet our basic understanding of electronic-circuit operation, electronic -circuittheory, has not made significant progress during the semiconductor industry's explosive growth from 1950s to the present. This is because the electronic circuit has never been considered to be a challenging research subject by physi cists. Linear passive circuit theory was established by the late 1940s. After the advent of the semiconductor electron devices, the interest of the technical community shifted away from circuit theory. Twenty years later, when integrated circuit technology began an explosive growth, cir cuit theory was again left behind in the shadow of rapidly progressing computer-aided design (CAD) technology. The present majority view is that electronic-circuit theory stands in a subordinate position to CAD and to device-processing technology. In 1950s and 1960s, several new semiconductor devices were invented every year, and each new device seemed to have some interesting funda mental physical mechanisms that appeared worth investigating. Com pared to attractive device physics, the problems of the semiconductor device circuit appeared less sophisticated and less attractive. Bright minds of the time drifted away from circuit theory to electron-device physics. After thirty years only one type of semiconductor device, the electron triode with several variations survived, whereas hundreds of them went into oblivion."
Hickman's latest guide is essential reading for anyone designing
analog circuits. This book, along with the recent Analog Circuits
Cookbook also available from Newnes, will enlighten, inform,
interest and even amuse readers, and give them the ability to
tackle analog and RF design problems with confidence.
This book introduces readers to a variety of tools for automatic analog integrated circuit (IC) sizing and optimization. The authors provide a historical perspective on the early methods proposed to tackle automatic analog circuit sizing, with emphasis on the methodologies to size and optimize the circuit, and on the methodologies to estimate the circuit's performance. The discussion also includes robust circuit design and optimization and the most recent advances in layout-aware analog sizing approaches. The authors describe a methodology for an automatic flow for analog IC design, including details of the inputs and interfaces, multi-objective optimization techniques, and the enhancements made in the base implementation by using machine leaning techniques. The Gradient model is discussed in detail, along with the methods to include layout effects in the circuit sizing. The concepts and algorithms of all the modules are thoroughly described, enabling readers to reproduce the methodologies, improve the quality of their designs, or use them as starting point for a new tool. An extensive set of application examples is included to demonstrate the capabilities and features of the methodologies described.
The book reports modeling and simulation techniques for substrate noise coupling effects in RFICs and introduces isolation structures and design guides to mitigate such effects with the ultimate goal of enhancing the yield of RF and mixed signal SoCs. The book further reports silicon measurements, and new test and noise isolation structures. To the authors knowledge, this is the first title devoted to the topic of substrate noise coupling in RFICs as part of a large SoC.
The second edition of this introductory book sets out clearly and concisely the principles of operation of the semiconductor devices that lie at the heart of the microelectronic revolution. The book aims to teach the reader how semiconductor devices are modelled. It begins by providing a firm background in the relevant semiconductor physics. These ideas are then used to construct both circuit models and mathematical models for diodes, bipolar transistors and MOSFETs. It also describes the processes involved in fabricating silicon chips containing these devices. The first edition has already proved a highly useful textbook to first and second year degree students in electrical and electronic engineering, and related disciplines. It is also useful to HND students in similar subject areas, and as supplementary reading for anyone involved in integrated circuit design and fabrication.
The conference "Advanced Materials for Interconnections" took place
in Strasbourg on 4-7 June 1996 hosted by the EMRS Society. Based on
the recent trends in microelectronics the main topics of the
conference were new materials for interconnects like special
aluminum alloys, tungsten and copper as well as low k dielectric
materials.
The book deals with the numerical simulation of noise in semiconductor devices operating in linear (small-signal) and nonlinear (large-signal) conditions. The main topics of the book are: An overview of the physical basis of noise in semiconductor devices, a detailed treatment of numerical noise simulation in small-signal conditions, and a presentation of innovative developments in the noise simulation of semiconductor devices operating in large-signal quasi-periodic conditions. The main benefit that the reader will derive from the book is the ability to understand, and, if needed, replicate the development of numerical, physics-based noise simulation of semiconductor devices in small-signal and large-signal conditions.
This book introduces systematic design methods for passive and active RF circuits and techniques, including state-of-the-art digital enhancement techniques. As the very first book dedicated to multiband RF circuits and techniques, this work provides an overview of the evolution of transmitter architecture and discusses current digital predistortion techniques. Readers will find a collection of novel research ideas and new architectures in concurrent multiband power dividers, power amplifiers and related digital enhancement techniques. This book will be of great interest to academic researchers, R&D engineers, wireless transmitter and protocol designers, as well as graduate students who wish to learn the core architectures, principles and methods of multiband RF circuits and techniques.
Current-mode design is of great interest to high-tech analog
designers today, who are principally concerned with designing whole
systems on a chip. This work focuses on the theory and methods of
many important current-mode circuit design techniques making it a
comprehensive technical overview that fills a gap in the current
literature.
Innovative Algorithms and Techniques in Automation, Industrial Electronics and Telecommunications includes a set of rigorously reviewed world-class manuscripts addressing and detailing state-of-the-art research projects in the areas of Industrial Electronics, Technology & Automation, Telecommunications and Networking. Innovative Algorithms and Techniques in Automation, Industrial Electronics and Telecommunications includes selected papers form the conference proceedings of the International Conference on Industrial Electronics, Technology & Automation (IETA 2006) and International Conference on Telecommunications and Networking (TeNe 06) which were part of the International Joint Conferences on Computer, Information and Systems Sciences and Engineering (CISSE 2006). All aspects of the conference were managed on-line; not only the reviewing, submissions and registration processes; but also the actual conference. Conference participants - authors, presenters and attendees - only needed an internet connection and sound available on their computers in order to be able to contribute and participate in this international ground-breaking conference. The on-line structure of this high-quality event allowed academic professionals and industry participants to contribute work and attend world-class technical presentations based on rigorously refereed submissions, live, without the need for investing significant travel funds or time out of the office. Suffice to say that CISSE received submissions from more than 70 countries, for whose researchers, this opportunity presented a much more affordable, dynamic and well-planned event to attend and submit their work to, versus a classic, on-the-ground conference. The CISSE conference audio room provided superb audio even over low speed internet connections, the ability to display PowerPoint presentations, and cross-platform compatibility (the conferencing software runs on Windows, Mac, and any other operating system that supports Java). In addition, the conferencing system allowed for an unlimited number of participants, which in turn granted CISSE the opportunity to allow all participants to attend all presentations, as opposed to limiting the number of available seats for each session.
This book focuses on the design of a Mega-Gray (a standard unit of total ionizing radiation) radiation-tolerant ps-resolution time-to-digital converter (TDC) for a light detection and ranging (LIDAR) system used in a gamma-radiation environment. Several radiation-hardened-by-design (RHBD) techniques are demonstrated throughout the design of the TDC and other circuit techniques to improve the TDC's resolution in a harsh environment are also investigated. Readers can learn from scratch how to design a radiation-tolerant IC. Information regarding radiation effects, radiation-hardened design techniques and measurements are organized in such a way that readers can easily gain a thorough understanding of the topic. Readers will also learn the design theory behind the newly proposed delta-sigma TDC. Readers can quickly acquire knowledge about the design of radiation-hardened bandgap voltage references and low-jitter relaxation oscillators, which are introduced in the content from a designer's perspective. * Discusses important aspects of radiation-tolerant analog IC design, including realistic applications and radiation effects on ICs; * Demonstrates radiation-hardened-by-design techniques through a design-test-radiation assessment practice; * Describes a new type of Time-to-Digital (TDC) converter designed for radiation-tolerant application; * Explains the design and measurement of all functional blocks (e.g., bandgap reference, relaxation oscillator) in the TDC.
This book, written by experts in the field, is based on the latest research on the analysis and synthesis of switched time-delay systems. It covers the stability, filtering, fault detection and control problems, which are studied using the average dwell time approach. It presents both the continuous-time and discrete-time systems and provides useful insights and methods, as well as practical algorithms that can be considered in other complex systems, such as neuron networks and genetic regulatory networks, making it a valuable resource for researchers, scientists and engineers in the field of system sciences and control communities.
This book describes how engineers can make optimum use of the two industry standard analysis/design tools, SystemC and SystemC-AMS. The authors use a system-level design approach, emphasizing how SystemC and SystemC-AMS features can be exploited most effectively to analyze/understand a given electronic system and explore the design space. The approach taken by this book enables system engineers to concentrate on only those SystemC/SystemC-AMS features that apply to their particular problem, leading to more efficient design. The presentation includes numerous, realistic and complete examples, which are graded in levels of difficulty to illustrate how a variety of systems can be analyzed with these tools.
. . . ????????????????????????????????? ????????????? ????????????,????? ???? ??????????? ???????????????????? ???. THUCYDIDIS HISTORIAE IV:108 C. Hude ed. , Teubner, Lipsiae MCMXIII ???????????,????? ??,? ????????????????? ???????????????????? ?????? ?????? ?????? ??? ????????? ??? ?' ?????????? ??' ?????????? ? ??????? ??? ????????????? ???????. ???????????????????:108 ???????????? ?????????????????????? ?. ?????????????. ????????????,????? It being the fashion of men, what they wish to be true to admit even upon an ungrounded hope, and what they wish not, with a magistral kind of arguing to reject. Thucydides (the Peloponnesian War Part I), IV:108 Thomas Hobbes Trans. , Sir W. Molesworth ed. In The English Works of Thomas Hobbes of Malmesbury, Vol. VIII I have been introduced to clock design very early in my professional career when I was tapped right out of school to design and implement the clock generation and distribution of the Alpha 21364 microprocessor. Traditionally, Alpha processors - hibited highly innovative clocking systems, always worthy of ISSCC/JSSC publi- tions and for a while Alpha processors were leading the industry in terms of clock performance. I had huge shoes to ?ll. Obviously, I was overwhelmed, confused and highly con?dent that I would drag the entire project down.
Short turnaround has become critical in the design of electronic systems. Software- programmable components such as microprocessors and digital signal processors have been used extensively in such systems since they allow rapid design revisions. However, the inherent performance limitations of software-programmable systems mean that they are inadequate for high-performance designs. Designers thus turned to gate arrays as a solution. User-programmable gate arrays (field-programmable gate arrays, FPGAs) have recently emerged and are changing the way electronic systems are designed and implemented. The growing complexity of the logic circuits that can be packed onto an FPGA chip means that it has become important to have automatic synthesis tools that implement logic functions on these architectures. Logic Synthesis for Field-Programmable Gate Arrays describes logic synthesis for both look-up table (LUT) and multiplexor-based architectures, with a balanced presentation of existing techniques together with algorithms and the system developed by the authors. Audience: A useful reference for VLSI designers, developers of computer-aided design tools, and anyone involved in or with FPGAs. |
You may like...
Techniques and Challenges for 300 mm…
H. Richter, P. Wagner, …
Hardcover
R4,302
Discovery Miles 43 020
Simulation Methods for ESD Protection…
Harald Gossner, Kai Esmark, …
Hardcover
R4,190
Discovery Miles 41 900
Exploring Zynq MPSoC - With PYNQ and…
Crockett H Louise, Northcote David, …
Hardcover
R1,884
Discovery Miles 18 840
Microwave Active Circuit Analysis and…
Clive Poole, Izzat Darwazeh
Hardcover
RF / Microwave Circuit Design for…
Ulrich L. Rohde, Matthias Rudolph
Hardcover
R4,952
Discovery Miles 49 520
|