![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Circuits & components
This book considers the design and development of nanoelectronic computing circuits, systems and architectures focusing particularly on memristors, which represent one of today's latest technology breakthroughs in nanoelectronics. The book studies, explores, and addresses the related challenges and proposes solutions for the smooth transition from conventional circuit technologies to emerging computing memristive nanotechnologies. Its content spans from fundamental device modeling to emerging storage system architectures and novel circuit design methodologies, targeting advanced non-conventional analog/digital massively parallel computational structures. Several new results on memristor modeling, memristive interconnections, logic circuit design, memory circuit architectures, computer arithmetic systems, simulation software tools, and applications of memristors in computing are presented. High-density memristive data storage combined with memristive circuit-design paradigms and computational tools applied to solve NP-hard artificial intelligence problems, as well as memristive arithmetic-logic units, certainly pave the way for a very promising memristive era in future electronic systems. Furthermore, these graph-based NP-hard problems are solved on memristive networks, and coupled with Cellular Automata (CA)-inspired computational schemes that enable computation within memory. All chapters are written in an accessible manner and are lavishly illustrated. The book constitutes an informative cornerstone for young scientists and a comprehensive reference to the experienced reader, hoping to stimulate further research on memristive devices, circuits, and systems.
The CMOS technology are has quickly grown, calling for a new text---and here it is, covering the analysis and design of CMOS integrated circuits that practicing engineers need to master to succeed. Filled with many examples and chapter-ending problems, the book not only describes the thought process behind each circuit topology, but also considers the rationale behind each modification. The analysis and design techniques focus on CMOS circuits but also apply to other IC technologies. Design of Analog CMOS Integrated Circuits deals with the analysis and design of analog CMOS integrated circuits, emphasizing recent technological developments and design paradigms that students and practicing engineers need to master to succeed in today's industry. Based on the author's teaching and research experience in the past ten years, the text follows three general principles: (1) Motivate the reader by describing the significance and application of each idea with real-world problems; (2) Force the reader to look at concepts from an intuitive point of view, preparing him/her for more complex problems; (3) Complement the intuition by rigorous analysis, confirming the results obtained by the intuitive, yet rough approach.
This book presents an updated selection of the most representative contributions to the 2nd and 3rd IEEE Workshops on Signal Propagation on Interconnects (SPI) which were held in TravemA1/4nde (Baltic Sea), Germany, May 13-15, 1998, and in Titisee-Neustadt (Black Forest), Germany, May 19-21, 1999. Interconnects in VLSI Design addresses the need of developers and researchers in the field of VLSI chip and package design. It offers a survey of current problems regarding the influence of interconnect effects on the electrical performance of electronic circuits and suggests innovative solutions. In this sense Interconnects in VLSI Design represents a continuation and a supplement to the first book, Signal Propagation on Interconnects, Kluwer Academic Publishers, 1998. The papers in Interconnects in VLSI Design cover a wide area of research directions. Apart from describing general trends they deal with the solution of signal integrity problems, the modeling of interconnects, parameter extraction using calculations and measurements and last, but not least, actual problems in the field of optical interconnects.
Emerging Trends in Computing, Informatics, Systems Sciences, and Engineering includes a set of rigorously reviewed world-class manuscripts addressing and detailing state-of-the-art research projects in the areas of Industrial Electronics, Technology & Automation, Telecommunications and Networking, Systems, Computing Sciences and Software Engineering, Engineering Education, Instructional Technology, Assessment, and E-learning. This book includes the proceedings of the International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering (CISSE 2010). The proceedings are a set of rigorously reviewed world-class manuscripts presenting the state of international practice in Innovative Algorithms and Techniques in Automation, Industrial Electronics and Telecommunications.
Active RC filters were first applied in the late 1950s. Since then,
there has been a rapid development in both theoretical research and
practical realization methods, as witnessed by the appearance of
some 3,000 publications on active RC filters. This abundance of
literature has, however, caused a great deal of confusion for
non-specialist engineers. In order to solve a problem of filter
design, a prolonged study is usually needed in order to make the
correct choice between a wide variety of filter structures.
Furthermore, most publications are intended to solve detailed
problems for experts in the field, with little useful contribution
for practising electrical engineers.
Despite the recent development and interest in the photonics of metallic wire structures, the relatively simple concepts and physics often remain obscured or poorly explained to those who do not specialize in the field. Electromagnetic Behaviour of Metallic Wire Structures provides a clear and coherent guide to understanding these phenomena without excessive numerical calculations. Including both background material and detailed derivations of the various different formulae applied, Electromagnetic Behaviour of Metallic Wire Structures describes how to extend basic circuit theory relating to voltages, currents, and resistances of metallic wire networks to include situations where the currents are no longer spatially uniform along the wire. This lays a foundation for a deeper understanding of the many new phenomena observed in meta-electromagnetic materials. Examples of applications are included to support this new approach making Electromagnetic Behaviour of Metallic Wire Structures a comprehensive and self-contained volume suitable for use by specialists, non-specialist, researchers and professionals in other relevant fields and even students.
Current multimedia and telecom applications require complex, heterogeneous multiprocessor system on chip (MPSoC) architectures with specific communication infrastructure in order to achieve the required performance. Heterogeneous MPSoC includes different types of processing units (DSP, microcontroller, ASIP) and different communication schemes (fast links, non standard memory organization and access). Programming an MPSoC requires the generation of efficient software running on MPSoC from a high level environment, by using the characteristics of the architecture. This task is known to be tedious and error prone, because it requires a combination of high level programming environments with low level software design. This book gives an overview of concepts related to embedded software design for MPSoC. It details a full software design approach, allowing systematic, high-level mapping of software applications on heterogeneous MPSoC. This approach is based on gradual refinement of hardware/software interfaces and simulation models allowing to validate the software at different abstraction levels. This book combines Simulink for high level programming and SystemC for the low level software development. This approach is illustrated with multiple examples of application software and MPSoC architectures that can be used for deep understanding of software design for MPSoC.
This book analyzes multi-MHz high frequency resonant DC-DC power converters with operating frequencies ranging from several MHz to tens of MHz in detail, aiming to support researchers and engineers with a focus on multi-MHz high frequency converters. The inverter stage, rectifier stage, matching network stage are analyzed in detail. Based on the three basic stages, typical non-isolated and isolated resonant DC-DC converters are depicted. To reduce the high driving loss under multi-MHz, resonant driving methods are introduced and improved. Also, the design and selection methods of passive and active component under multi-MHz frequency are described, especially for aircore inductor and transformer. Furthermore, multi-MHz resonant converter provides an approach for achieving flexible system.
According to the Semiconductor Industry Association's 1999 International Technology Roadmap for Semiconductors, by the year 2008 the integration of more than 500 million transistors will be possible on a single chip. Integrating transistors on silicon will depend increasingly on design reuse. Design reuse techniques have become the subject of books, conferences, and podium discussions over the last few years. However, most discussions focus on higher-level abstraction like RTL descriptions, which can be synthesized. Design reuse is often seen as an add-on to normal design activity, or a special design task that is not an integrated part of the existing design flow. This may all be true for the ASIC world, but not for high-speed, high-performance microprocessors. In the field of high-speed microprocessors, design reuse is an
integrated part of the design flow. The method of choice in this
demanding field was, and is always, physical design reuse at the
layout level. In the past, the practical implementations of this
method were linear shrinks and the lambda approach. With the
scaling of process technology down to 0.18 micron and below, this
approach lost steam and became inefficient. Automatic Layout Modification, Including design reuse of the Alpha CPU in 0.13 micron SOI technology is a welcome effort to improving some of the practices in chip design today. It is a comprehensive reference work on Automatic Layout Modification which will be valuable to VLSI courses at universities, and to CAD and circuit engineers and engineering managers.
CMOS Test and Evaluation: A Physical Perspective is a single source for an integrated view of test and data analysis methodology for CMOS products, covering circuit sensitivities to MOSFET characteristics, impact of silicon technology process variability, applications of embedded test structures and sensors, product yield, and reliability over the lifetime of the product. This book also covers statistical data analysis and visualization techniques, test equipment and CMOS product specifications, and examines product behavior over its full voltage, temperature and frequency range.
This Book and Simulation Software Bundle Project Dear Reader, this book project brings to you a unique study tool for ESD protection solutions used in analog-integrated circuit (IC) design. Quick-start learning is combined with in-depth understanding for the whole spectrum of cro- disciplinary knowledge required to excel in the ESD ?eld. The chapters cover technical material from elementary semiconductor structure and device levels up to complex analog circuit design examples and case studies. The book project provides two different options for learning the material. The printed material can be studied as any regular technical textbook. At the same time, another option adds parallel exercise using the trial version of a complementary commercial simulation tool with prepared simulation examples. Combination of the textbook material with numerical simulation experience presents a unique opportunity to gain a level of expertise that is hard to achieve otherwise. The book is bundled with simpli?ed trial version of commercial mixed- TM mode simulation software from Angstrom Design Automation. The DECIMM (Device Circuit Mixed-Mode) simulator tool and complementary to the book s- ulation examples can be downloaded from www.analogesd.com. The simulation examples prepared by the authors support the speci?c examples discussed across the book chapters. A key idea behind this project is to provide an opportunity to not only study the book material but also gain a much deeper understanding of the subject by direct experience through practical simulation examples.
Improving the performance of existing technologies has always been a focal practice in the development of computational systems. However, as circuitry is becoming more complex, conventional techniques are becoming outdated and new research methodologies are being implemented by designers. Performance Optimization Techniques in Analog, Mix-Signal, and Radio-Frequency Circuit Design features recent advances in the engineering of integrated systems with prominence placed on methods for maximizing the functionality of these systems. This book emphasizes prospective trends in the field and is an essential reference source for researchers, practitioners, engineers, and technology designers interested in emerging research and techniques in the performance optimization of different circuit designs.
This title deals with the design and analysis of log-domain filter circuits. It describes synthesis methods for developing bipolar or BiCMOS filter circuits with cut-off frequencies ranging from the low kilohertz range to several hundred megahertz. Numerous examples provide measured experimental data from IC prototypes.
Direct-Write Technologies covers applications, materials, and the
techniques in using direct-write technologies. This book provides
an overview of the different direct write techniques currently
available, as well as a comparison between the strengths and
special attributes for each of the techniques. The techniques
described open the door for building prototypes and testing
materials. The book also provides an overview of the
state-of-the-art technology involved in this field. Basic academic
researchers and industrial development engineers who pattern thin
film materials will want to have this text on their shelves as a
resource for specific applications. Others in this or related
fields will want the book to read the introductory material
summarizing isuses common to all approaches, in order to compare
and contrast different techniques. Everyday applications include
electronic components and sensors, especially chemical and
biosensors.
This book presents the latest techniques for characterization, modeling and design for nano-scale non-volatile memory (NVM) devices. Coverage focuses on fundamental NVM device fabrication and characterization, internal state identification of memristic dynamics with physics modeling, NVM circuit design and hybrid NVM memory system design-space optimization. The authors discuss design methodologies for nano-scale NVM devices from a circuits/systems perspective, including the general foundations for the fundamental memristic dynamics in NVM devices. Coverage includes physical modeling, as well as the development of a platform to explore novel hybrid CMOS and NVM circuit and system design. * Offers readers a systematic and comprehensive treatment of emerging nano-scale non-volatile memory (NVM) devices; * Focuses on the internal state of NVM memristic dynamics, novel NVM readout and memory cell circuit design and hybrid NVM memory system optimization; * Provides both theoretical analysis and practical examples to illustrate design methodologies; * Illustrates design and analysis for recent developments in spin-toque-transfer, domain-wall racetrack and memristors.
This book discusses the opportunities offered by disruptive technologies to overcome the economical and physical limits currently faced by the electronics industry. It provides a new methodology for the fast evaluation of an emerging technology from an architectural prospective and discusses the implications from simple circuits to complex architectures. Several technologies are discussed, ranging from 3-D integration of devices (Phase Change Memories, Monolithic 3-D, Vertical NanoWires-based transistors) to dense 2-D arrangements (Double-Gate Carbon Nanotubes, Sublithographic Nanowires, Lithographic Crossbar arrangements). Novel architectural organizations, as well as the associated tools, are presented in order to explore this freshly opened design space.
This book presents the cross-layer design and optimization of wake-up receivers for wireless body area networks (WBAN), with an emphasis on low-power circuit design. This includes the analysis of medium access control (MAC) protocols, mixer-first receiver design, and implications of receiver impairments on wideband frequency-shift-keying (FSK) receivers. Readers will learn how the overall power consumption is reduced by exploiting the characteristics of body area networks. Theoretical models presented are validated with two different receiver implementations, in 90nm and 40nm CMOS technology.
This book is about various adaptive and dynamic techniques used to optimize processor power and performance. It is based on a very successful forum at ISSCC which focused on Adaptive Techniques. The book looks at the underlying process technology for adaptive designs and then examines different circuits, architecture and software that address the different aspects. The chapters are written by people both in academia and the industry to show the scope of alternative practices.
Sigma delta modulation has become a very useful and widely applied technique for high performance Analog-to-Digital (A/D) conversion of narrow band signals. Through the use of oversampling and negative feedback, the quantization errors of a coarse quantizer are suppressed in a narrow signal band in the output of the modulator. Bandpass sigma delta modulation is well suited for A/D conversion of narrow band signals modulated on a carrier, as occurs in communication systems such as AM/FM receivers and mobile phones. Due to the nonlinearity of the quantizer in the feedback loop, a sigma delta modulator may exhibit input signal dependent stability properties. The same combination of the nonlinearity and the feedback loop complicates the stability analysis. In Bandpass Sigma Delta Modulators, the describing function method is used to analyze the stability of the sigma delta modulator. The linear gain model commonly used for the quantizer fails to predict small signal stability properties and idle patterns accurately. In Bandpass Sigma Delta Modulators an improved model for the quantizer is introduced, extending the linear gain model with a phase shift. Analysis shows that the phase shift of a sampled quantizer is in fact a phase uncertainty. Stability analysis of sigma delta modulators using the extended model allows accurate prediction of idle patterns and calculation of small-signal stability boundaries for loop filter parameters. A simplified rule of thumb is derived and applied to bandpass sigma delta modulators. The stability properties have a considerable impact on the design of single-loop, one-bit, high-order continuous-time bandpass sigma delta modulators. The continuous-time bandpass loop filter structure should have sufficient degrees of freedom to implement the desired (small-signal stable) sigma delta modulator behavior. Bandpass Sigma Delta Modulators will be of interest to practicing engineers and researchers in the areas of mixed-signal and analog integrated circuit design.
This book provides an in-depth overview of on chip instrumentation technologies and various approaches taken in adding instrumentation to System on Chip (ASIC, ASSP, FPGA, etc.) design that are collectively becoming known as Design for Debug (DfD). On chip instruments are hardware based blocks that are added to a design for the specific purpose and improving the visibility of internal or embedded portions of the design (specific instruction flow in a processor, bus transaction in an on chip bus as examples) to improve the analysis or optimization capabilities for a SoC. DfD is the methodology and infrastructure that surrounds the instrumentation. Coverage includes specific design examples and discussion of implementations and DfD tradeoffs in a decision to design or select instrumentation or SoC that include instrumentation. Although the focus will be on hardware implementations, software and tools will be discussed in some detail.
History of the Book The last three decades have witnessed an explosive development in integrated circuit fabrication technologies. The complexities of cur rent CMOS circuits are reaching beyond the 100 nanometer feature size and multi-hundred million transistors per integrated circuit. To fully exploit this technological potential, circuit designers use sophisticated Computer-Aided Design (CAD) tools. While supporting the talents of innumerable microelectronics engineers, these CAD tools have become the enabling factor responsible for the successful design and implemen tation of thousands of high performance, large scale integrated circuits. This research monograph originated from a body of doctoral disserta tion research completed by the first author at the University of Rochester from 1994 to 1999 while under the supervision of Prof. Eby G. Friedman. This research focuses on issues in the design of the clock distribution net work in large scale, high performance digital synchronous circuits and particularly, on algorithms for non-zero clock skew scheduling. During the development of this research, it has become clear that incorporating timing issues into the successful integrated circuit design process is of fundamental importance, particularly in that advanced theoretical de velopments in this area have been slow to reach the designers' desktops."
Software Defined Radio makes wireless communications easier, more efficient, and more reliable. This book bridges the gap between academic research and practical implementation. When beginning a project, practicing engineers, technical managers, and graduate students can save countless hours by considering the concepts presented in these pages.The author covers the myriad options and trade-offs available when selecting an appropriate hardware architecture.As demonstrated here, the choice between hardware- and software-centric architecture can mean the difference between meeting an aggressive schedule and bogging down in endless design iterations.Because of the author's experience overseeing dozens of failed and successful developments, he is able to present many real-life examples.Some of the key concepts covered are: Choosing the right architecture for the market - laboratory, military, or commercial, Hardware platforms - FPGAs, GPPs, specialized and hybrid devices, Standardization efforts to ensure interoperability and portabilitym State-of-the-art components for radio frequency, mixed-signal, and baseband processing. The text requires only minimal knowledge of wireless communications; whenever possible, qualitative arguments are used instead of equations.An appendix provides a quick overview of wireless communications and introduces most of the concepts the readers will need to take advantage of the material.An essential introduction to SDR, this book is sure to be an invaluable addition to any technical bookshelf."
Research in analog integrated circuits has recently gone in the
direction of low-voltage (LV), low-power (LP) design, especially in
the environment of portable systems where a low supply voltage,
given by a single-cell battery, is used. These LV circuits have to
show a reduced power consumption to maintain a longer battery
lifetime as well. In this area, traditional voltage-mode techniques
are going to be substituted by the current-mode approach, which has
the recognized advantage to overcome the gain-bandwidth product
limitation, typical of operational amplifiers. Then they do not
require high voltage gains and have good performance in terms of
speed, bandwidth and accuracy. Inside the current-mode
architectures, the current-conveyor (CCII) can be considered the
basic circuit block because all the active devices can be made of a
suitable connection of one or two CCIIs. CCII is particularly
attractive in portable systems, where LV LP constraints have to be
taken into account. In fact, it suffers less from the limitation of
low current utilisation, while showing full dynamic characteristics
at reduced supplies (especially CMOS version) and good high
frequency performance. Recent advances in integrated circuit
technology have also highlighted the usefulness of CCII solutions
in a large number of signal processing applications.
Combining ready-to-use programs, design formulas, design theory and optimization algorithms for linear microwave circuits, this book contains source code for the various programs cited in the text. A special floppy disk that contains the source code is available. |
![]() ![]() You may like...
Applied Scientific Computing - With…
Peter R. Turner, Thomas Arildsen, …
Hardcover
R1,549
Discovery Miles 15 490
Object-oriented Design Knowledge…
Mario Piattini, Javier Garzas
Hardcover
R2,715
Discovery Miles 27 150
LOTOSphere: Software Development with…
Tommaso Bolognesi, Jeroen Van De Lagemaat, …
Hardcover
R4,648
Discovery Miles 46 480
A Student Guide to Object-Oriented…
Carol Britton, Jill Doake
Paperback
R1,482
Discovery Miles 14 820
|