![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > Food & beverage technology
The proceedings volume focuses on halal management and science topics. Issues related to business model, management, marketing, finance, food security, lifestyle, hospitality, tourism, cosmetics, personal care, legal aspects, technologies and sciences are presented in the chapters. In addition, the book also covers comprehensive areas of halalan toyyiban chains of production from raw materials, ingredients, planning, manufacturing, packaging, logistics, delivery, warehousing, marketing to consumption. Various survey results and few cases explore practical solutions to these issues of interest to academics in university settings as well as practitioners in different industries and government agencies.
This is a completely revised edition, including new material, from 'Culture Media for Food Microbiology' by J.E.L. Corry et al., published in Progress in Industrial Microbiology, Volume 34, Second Impression 1999.
This volume is the first centralized source of technological and policy solutions for sustainable agriculture and food systems resilience in the face of climate change. The editors have compiled a comprehensive collection of the latest tested, replicable green technologies and approaches for food security, including smart crops and new agricultural paradigms, sustainable natural resources management, and strategies for risk assessment and governance. Studies from resource-constrained countries with vulnerable populations are emphasized, with contributions on multisector partnership from development professionals. Debates concerning access to climate-smart technologies, intellectual property rights, and international negotiations on technology transfer are also included. The editors are, respectively, a public health physician, a development professional and an environmental scientist. They bring their varied perspectives together to curate a holistic volume that will be useful for policy makers, scientists, community-based organizations, international organizations and researchers across the world.
This publication offers a systemic analysis of sustainability in the food system, taking as its framework the Sustainable Development Goals of the 2030 Agenda of the United Nations. Targeted chapters from experts in the field cover main challenges in the food system and propose methods for achieving long term sustainability. Authors focus on how sustainability can be achieved along the whole food chain and in different contexts. Timely issues such as food security, climate change and migration and sustainable agriculture are discussed in depth. The volume is unique in its multidisciplinary and multi-stakeholder approach. Chapter authors come from a variety of backgrounds, and authors include academic professors, members of CSO and other international organizations, and policy makers. This plurality allows for a nuanced analysis of sustainability goals and practices from a variety of perspectives, making the book useful to a wide range of readers working in different areas related to sustainability and food production. The book is targeted towards the academic community and practitioners in the policy, international cooperation, nutrition, geography, and social sciences fields. Professors teaching in nutrition, food technology, food sociology, geography, global economics, food systems, agriculture and agronomy, and political science and international cooperation may find this to be a useful supplemental text in their courses.
This work highlights a new research area driven by a material science approach to dairy fats and dairy fat-rich products where innovative dairy products and ingredients can be tailor-made. Cutting edge topics such as tribology of dairy fats and dairy products, manipulation of differentiated-sized milk fat globules, milk fat interesterification for infant formula, structuring of lipids in dairy products and production of human milk fat substitutes by including dairy fats are featured in dedicated chapters authored by international scientific experts from across the globe. The text also presents in-depth research on proteomic characterization, digestion and the nutritional functionality of milk fat globule membrane. The biosynthesis, chemistry, digestion and nutritional roles of milk lipids, physics of dairy fats, structure and functionality of the milk fat globule membrane, analytical methods, materials science, technology and manufacturing of dairy fat-rich products such as butter, dairy fat spreads, dairy creams, cream powders and ghee are also covered in-depth. Dairy Fat Products and Functionality: Fundamental Science and Technology is a useful reference text for technologists and scientists interested in advancing their fundamental knowledge of dairy fat and dairy products as well as using a materials science and technology approach to guide efforts or widen research opportunities in optimizing the functionality of these products. From their physics and chemistry to their nutritional values and methodologies, this comprehensive and innovative text covers all the necessary information needed to understand the new methods and technologies driving the modern production of milk fat products.
Basic Laboratory Methods for Biotechnology, Third Edition is a versatile textbook that provides students with a solid foundation to pursue employment in the biotech industry and can later serve as a practical reference to ensure success at each stage in their career. The authors focus on basic principles and methods while skillfully including recent innovations and industry trends throughout. Fundamental laboratory skills are emphasized, and boxed content provides step by step laboratory method instructions for ease of reference at any point in the students' progress. Worked through examples and practice problems and solutions assist student comprehension. Coverage includes safety practices and instructions on using common laboratory instruments. Key Features: Provides a valuable reference for laboratory professionals at all stages of their careers. Focuses on basic principles and methods to provide students with the knowledge needed to begin a career in the Biotechnology industry. Describes fundamental laboratory skills. Includes laboratory scenario-based questions that require students to write or discuss their answers to ensure they have mastered the chapter content. Updates reflect recent innovations and regulatory requirements to ensure students stay up to date. Tables, a detailed glossary, practice problems and solutions, case studies and anecdotes provide students with the tools needed to master the content. To succeed in the lab, it is crucial to be comfortable with the math calculations that are part of everyday work. This accessible introduction to common laboratory techniques focuses on the basics, helping even readers with good math skills to practice the most frequently encountered types of problems. Basic Laboratory Calculations for Biotechnology, Second Edition discusses very common laboratory problems, all applied to real situations. It explores multiple strategies for solving problems for a better understanding of the underlying math. Primarily organized around laboratory applications, the book begins with more general topics and moves into more specific biotechnology laboratory techniques at the end. This book features hundreds of practice problems, all with solutions and many with boxed, complete explanations; plus hundreds of "story problems" relating to real situations in the lab. Additional features include: Discusses common laboratory problems with all material applied to real situations Presents multiple strategies for solving problems help students to better understand the underlying math Provides hundreds of practice problems and their solutions Enables students to complete the material in a self-paced course structure with little teacher assistance Includes hundreds of "story problems"that relate to real situations encountered in the laboratory
The limited aqueous solubility of bioactive pharmaceutical ingredients presents a tremendous challenge in the development of new drugs. In recent years, methods have been developed to protect these sensitive bioactive compounds, namely antioxidants, with the aim of increasing the public sanitation grades. Emulsion-based systems are particularly interesting as colloidal delivery encapsulation systems, because they can easily be created from food-grade ingredients using relatively simple processing protocols. It is one of the most favorable delivery systems to increase the solubility of phytochemicals, nutraceuticals and food additives. Emulsion-based Encapsulation of Antioxidants: Design and Performance advances the field of colloid science through the investigation of the effects of formulation and process parameters that influence emulsion production. The book offers a deeper comprehension of the technological and biological aspects of the incorporation of encapsulated compounds in food matrices and explication of their activity. Chapters provide an overview of the status of emulsion-based formulations to encapsulate antioxidants, fabrication, properties, applications, and biological fate with emphasis on systems suitable for utilization within industry. Special emphasis is placed on the antioxidant activity of the carriers being the key advantage of these emulsion-based systems. The main aim of the book is to inspire and to guide fellow scientists and students in this field. Filled with illustrations, figures, case studies, practical examples, and historical perspectives, the book can also be used as a practical handbook or graduate textbook. For industry professionals, the book presents easy-to-achieve approaches to industrial pharmaceutical production.
Wheat Quality for Improving Processing and Human Health brings together an international group of leading wheat scientists to outline highly relevant and diverse aspects and the latest advances in understanding of the world's most consumed cereal. Topics covered include LMW glutenins, starch-related proteins, and the impact of processing on composition and consumer health. Individual chapters focus on important factors such as FODMAPs, protein structure, dough viscoelasticity and fumonisins. The environmental effects on allergen content are comprehensively covered, as are phenolic compounds and molecular markers. The major quality screening tools and genetic resources are reviewed in depth. Gluten is a major focus of this work with chapters dedicated to health effects, analytical methods and standards, proteomics and mutant proteins. Starting in 2015, wheat quality scientists from across the globe have united to develop the Expert Working Group for Improving Wheat Quality for Processing and Health under the umbrella of the Wheat Initiative. This joint effort provides a framework to establish strategic research and organisation priorities for wheat research at the international level in both developed and developing countries. This Expert Working Group aims to maintain and improve wheat quality for processing and health under varying environmental conditions. The Group focuses on a broad range of wheat quality issues including seed proteins, carbohydrates, nutrition quality and micronutrient content, grain processing and food safety. Bioactive compounds are also considered, both those with negative effects such as allergens and mycotoxins, and those with positive effects such as antioxidants and fibre. The Group also works in the development of germplasm sets and other tools that promote wheat quality research. Wheat quality specialists working on the wheat value chain, and nutritionists will find this book a useful resource to increase and update their knowledge of wheat quality, nutrition and health issues.
This book focuses on the preparation and characterisation of polyvinyl alcohol (PVA)/ halloysite nanotube (HNT) bionanocomposite films with different HNT contents for potential use in food packaging. It examines the effect of material composition and nanofiller content on mechanical, thermal and optical properties in relation to their morphological structures, and also comprehensively describes the water resistance, biodegradation and migration rates of such bionanocomposites, as well as their barrier properties in terms of water vapour transmission, and water vapour, air and oxygen permeabilities. Further, this book discusses the use of Nielsen model and Cussler model to predict the relative permeability of bionanocomposites, demonstrating that Nielsen model is more effective and in better agreement with experimental data obtained. Lastly, it discusses the application of bionanocomposite films in food packaging to prolong the shelf life of freshly cut avocados and peaches.
Food Safety Engineering is the first reference work to provide up-to-date coverage of the advanced technologies and strategies for the engineering of safe foods. Researchers, laboratory staff and food industry professionals with an interest in food engineering safety will find a singular source containing all of the needed information required to understand this rapidly advancing topic. The text lays a solid foundation for solving microbial food safety problems, developing advanced thermal and non-thermal technologies, designing food safety preventive control processes and sustainable operation of the food safety preventive control processes. The first section of chapters presents a comprehensive overview of food microbiology from foodborne pathogens to detection methods. The next section focuses on preventative practices, detailing all of the major manufacturing processes assuring the safety of foods including Good Manufacturing Practices (GMP), Hazard Analysis and Critical Control Points (HACCP), Hazard Analysis and Risk-Based Preventive Controls (HARPC), food traceability, and recalls. Further sections provide insights into plant layout and equipment design, and maintenance. Modeling and process design are covered in depth. Conventional and novel preventive controls for food safety include the current and emerging food processing technologies. Further sections focus on such important aspects as aseptic packaging and post-packaging technologies. With its comprehensive scope of up-to-date technologies and manufacturing processes, this is a useful and first-of-its kind text for the next generation food safety engineering professionals.
This book is based on selected papers from keynote and symposium sessions given at the 16th International Union of Food Science and Technology (IUFoST) World Congress, held in Foz do Iguacu, Brazil August, 2012. The theme of the Congress was the challenges faced by food science in both the developed and developing regions of the world. The symposia featured prominent world-renowned keynote and plenary speakers, young researchers, and the technical sessions covered the whole spectrum of basic and applied food science and technology, including consumer issues and education, diets and health, ethnic foods, and R&D.
This book describes practices used on farms and in farmers markets selling foods directly to consumers in U.S. and international markets. It identifies hazards associated with those practices that could put consumers at increased risk for foodborne illness. It also provides tools for identifying hazards on farms and in markets and guidance for establishing food-safe markets. The local food movement, inspired by initiatives such as the USDA's "Know Your Farmer, Know Your Food"; "Farm to School"; "Farm to Pre-school"; and "The People's Garden", is sweeping the country. Nowhere is this interest more evident than at farmers markets. The number of farmers markets has increased almost 400% since the early 1990s, with over 8,600 farmers markets listed in the USDA's market directory in 2016. Many of the customers for local markets are senior adults, people who may have health concerns, and mothers with young children shopping for foods they perceive to be healthier and safer than those available in grocery stores. This means that many of the customers may be in population groups that are most at risk for foodborne illness and the serious complications that can result. In surveys, however, farmers selling directly to consumers self-reported practices that could increase risk for foodborne illnesses. These included use of raw manure as fertilizer without appropriate waiting periods between application and harvest, as outlined in the National Organic Program, a lack of sanitation training for farm workers handling produce, a lack of proper cleaning and sanitizing of surfaces that come in contact with produce, and use of untested surface water for rinsing produce before taking it to market. Surveys of market managers found that many had limited experience and most had no food safety plans for their markets. Observational studies in markets have corroborated self-reported practices that could increase foodborne illness risks, including lack of handwashing, lack of access to well-maintained toilet and handwashing facilities, use of materials that cannot be cleaned and sanitized appropriately, and lack of temperature control for foods that must have time and temperature controlled for safety. These potential food safety risks are not only seen in U.S. farmers markets, but also have been identified in international markets. This book is unique in that it provides evidence-based information about food safety hazards and potential risks associated with farmers markets. It presents an overview of farm and market practices and offers guidance for enhancing food safety on farms and in markets for educators, farmers, producers, vendors and market managers. Dr. Judy A. Harrison is a Professor in the Department of Foods and Nutrition at the University of Georgia (UGA) where she has been named a Walter Bernard Hill Fellow for distinguished achievement in public service and outreach. Serving as a food safety specialist for UGA Cooperative Extension, she has provided 25 years of food safety education for a variety of audiences across the food system.
This book offers comprehensive information on the developments and applications of the solid phase microextraction (SPME) technique. The first part of the book briefly introduces readers to the fundamentals of SPME, while subsequent sections describe the applications of SPME technique in detail, including environmental analysis (air, water, soil/sediments), food analysis (volatile/nonvolatile compounds), and bioanalysis (plants, animal tissues, body fluids). The advantages and future challenges of the SPME technique are also discussed. Including recent research advances and further developments of SPME, the book offers a practical reference guide and a valuable resource for researchers and users of SPME techniques. The target audience includes analytical chemists, environmental scientists, biological scientists, material scientists, and analysts, as well as students at universities/institutes in related fields. Dr. Gangfeng Ouyang is a Professor at the School of Chemistry and Chemical Engineering, Sun Yat-sen University, China. Dr. Ruifen Jiang is an Associate Professor at the School of Environment, Jinan University, China.
What 200 products can be made from a dead chicken?What should turkey really taste like?How can you make a ready-made meal appear less manufactured?How do you market a "folk-pizza"?This fascinating and entertaining book examines the strategies and struggles of the young professionals who are responsible for marketing a variety of ready-made food products for a major Norwegian food manufacturer. This setting provides the empirical focus for the analysis of the key tensions and contradictions which are to be found in modernity.Through a detailed description of "everyday-life" in the marketing department, the book critically examines many of the features which are believed to characterise modernity, such as authenticity, ambivalence and the quest for order. The setting also allows the author to explore key economic terms such as "the market," "product," "brand" and "consumer."Drawing on comparative material, the author suggests that modernity may be characterized, not so much by an effort at making order, but rather by specific ways of dealing with ambivalence, and demonstrates that features generally associated with modernity may not be so modern after all.
This text provides a comprehensive and thorough overview of kinetic modelling in food systems, which will allow researchers to further their knowledge on the chemistry and practical use of modelling techniques. The main emphasis is on performing kinetic analyses and creating models, employing a hands-on approach focused on putting the content discussed to direct use. The book lays out the requisite basic information and data surrounding kinetic modelling, presents examples of applications to different problems and provides exercises that can be solved utilizing the data provided. Kinetic Analysis of Food Systems pursues a practical approach to kinetic analysis, providing helpful exercises involving chlorophyll degradation in processed vegetables, metabolic oscillations and sugar accumulation in cold-stored potatoes, transesterification of oils to manufacture biodiesel, aggregation of whey proteins to make protein gels and crystallization of fat stabilizers used in nut butters, among others. The book lays out the basics of kinetic modelling and develops several new models for the study of these complex systems. Taken together with the accompanying exercises, they offer a full portrait of kinetic analysis, from its basic scientific groundwork to its application.
Proteomics, like other post-genomics tools, has been growing at a rapid pace and has important applications in numerous fields of science. While its use in animal and veterinary sciences is still limited, there have been considerable advances in this field in recent years, in areas as diverse as physiology, nutrition and food of animal origin processing. This is mainly as a consequence of a wider availability and better understanding of proteomics methodologies by animal and veterinary researchers. This book provides a comprehensive, state-of-the-art account of the status of farm-animal proteomics research, focusing on the principles behind proteomics methodologies and its specific applications and offering clear example.
This book introduces recovery and stabilization of common bioactive materials in foods as well as materials science aspects of engineering stable bioactive delivery systems. The book also describes most typical unit operations and processes used in recovery and manufacturing of food ingredients and foods with stabilized bioactive components. The 15 chapters of the book discuss in detail substances that need to be protected and delivered via foods and beverages to achieve good stability, bioavailability and efficacy. Dedicated chapters present current and novel technologies used for stabilization and delivery of bioactive components. The material included covers formulation, stability, digestive release, bioaccessability and bioavailability. The text features a special emphasis on the materials science and technological aspects required for stabilization and successful production of foods with bioactive components. Consumer demand for healthier, yet satisfying food products is posing increasingly tough challenges for the food industry. Scientific research reveals new bioactive food components and new functionalities of known components. Food materials science has also developed to a stage where food materials can be designed and produced to protect sensitive components for their delivery in complex food products. Such delivery systems must meet high safety and efficacy requirements and regulations, as well as economic viability criteria and consumer acceptance.
This book provides a new approach to the control of food transformation processes, emphasizing the advantage of considering the system as a multivariable one, and taking a holistic approach to the decision-making process in the plant, considering not only the technical but also the economic implications of these decisions. In addition, it presents a hierarchical structure for the global control of the plant, and includes appropriate techniques for each of the control layers. The book addresses the challenges of modeling food transformation processes, using both traditional system-identification techniques and, where these prove impractical, models based on expert knowledge and using fuzzy systems. The construction of optimal controllers for each of these types of models is also discussed, as a means to close a feedback loop on the higher-level outputs of the process. Finally, the problem of production planning is covered from two standpoints: the traditional batch-sizing problem, and the planning of production throughout the season. Systematic season-wide production planning is built upon the models constructed for the control of the plant, and incorporates market- and business-specific information. Examples based on the processing of various foodstuffs help to illustrate the text throughout, while the book's closing chapter presents a case study on advances in the processing of olive oil. Given its scope, the book will primarily be of interest to two groups of readers: food engineering practitioners and students, who are familiar with the characteristics of food processes but have little or no background in control engineering; and control engineering researchers, students and practitioners, whose situation is just the opposite, and who wish to learn more about food engineering and its specific challenges for control. Advances in Industrial Control reports and encourages the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control. |
![]() ![]() You may like...
The Logic of Evangelism
Michael J Gehring, Andrew D. Kinsey, …
Hardcover
Cooperative Economic Insect Report, Vol…
United States Department of Agriculture
Hardcover
R828
Discovery Miles 8 280
|