![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Science: general issues > Scientific equipment & techniques, laboratory equipment
The structure of a growth or an etch front on a surface is not only
a subject of great interest from the practical point of view but
also is of fundamental scientific interest. Very often surfaces are
created under non-equilibrium conditions such that the morphology
is not always smooth.
Introducing students to basic lab techniques and illustrating core chemical principles Prepared by John H. Nelson and Kenneth C. Kemp, both of the University of Nevada, this manual contains 43 finely tuned experiments chosen to introduce students to basic lab techniques and to illustrate core chemical principles. In the 14th Edition, all experiments were carefully edited for accuracy, safety, and cost. Pre-labs and questions were revised and new experiments added concerning solutions, polymers, and hydrates. Each of the experiments is self-contained, with sufficient background material, enabling students to conduct and understand the experiment. Each has a pedagogical objective to exemplify one or more specific principles. Because the experiments are self-contained, they may be undertaken in any order, although the authors have found in their General Chemistry course that the sequence of Experiments 1 through 7 provides the firmest background and introduction. To assist the student, the authors have included pre-lab questions for the student to answer before starting the lab. The questions are designed to help the student understand the experiment, to learn how to do the necessary calculations to treat their data, and as an incentive to read the experiment in advance.
cryoEM, a new volume in the Methods in Enzymology series, continues the legacy of this premier serial with quality chapters authored by leaders in the field. This volume covers research methods and new developments in recording images, the creation, evaluation and validation of 3D maps from the images, model building into maps and refinement of the resulting atomic structures, and applications of essentially single particle methods to helical structures and to sub-tomogram averaging.
Provides extensive and thoroughly exhaustive coverage of precision laser spectroscopy Presents chapters written by recognized experts in their individual fields Topics covered include cold atoms, cold molecules, methods and techniques for production of cold molecules, optical frequency standards based on trapped single ions, etc Applicable for researchers and graduate students of optical physics and precision laser spectroscopy
This book describes modern focused ion beam microscopes and techniques and how they can be used to aid materials metrology and as tools for the fabrication of devices that in turn are used in many other aspects of fundamental metrology. Beginning with a description of the currently available instruments including the new addition to the field of plasma-based sources, it then gives an overview of ion solid interactions and how the different types of instrument can be applied. Chapters then describe how these machines can be applied to the field of materials science and device fabrication giving examples of recent and current activity in both these areas.
This book covers the fundamentals of Helium Ion Microscopy (HIM) including the Gas Field Ion Source (GFIS), column and contrast formation. It also provides first hand information on nanofabrication and high resolution imaging. Relevant theoretical models and the existing simulation approaches are discussed in an extra section. The structure of the book allows the novice to get acquainted with the specifics of the technique needed to understand the more applied chapters in the second half of the volume. The expert reader will find a complete reference of the technique covering all important applications in several chapters written by the leading experts in the field. This includes imaging of biological samples, resist and precursor based nanofabrication, applications in semiconductor industry, using Helium as well as Neon and many more. The fundamental part allows the regular HIM user to deepen his understanding of the method. A final chapter by Bill Ward, one of the pioneers of HIM, covering the historical developments leading to the existing tool complements the content.
This volume is a compilation of laboratory protocols and methodology required for the study of molecular chaperones and the cellular stress response. Chapters detail stress response in Hsf1, Hsf2 and Hsf4 knockout mice, mapping HSP interaction networks, the LUminescence-based Mammalian IntERactome (LUMIER), Hsp70 biology, protein folding activity of Hsp90, cytotoxicity of HSP inhibitors, computational approaches for modeling allosteric Hsp90 interactions, HSPs in immunity and vaccine development , and biologies of Hsp70 and Hsp90. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Chaperones: Methods and Protocols aims to ensure successful results in the further study of this vital field.
This volume is the cumulative subject index for volumes 1-32 of Experimental Methods in Physical Sciences.
Originally published in 1665, Micrographia is the most famous and influential work of English scholar ROBERT HOOKE (1635-1703), a notable member of the Royal Society and the scientist for whom Hooke's Law of elasticity is named. Here, Hooke describes his observations of various household and biological specimens, such as the eye of a fly and the structure of plants, and became the first person to use the term cell in biology, as the cells in plants reminded him of monk's living quarters. In addition to his studies using a microscope, Hooke also discusses the heavenly bodies as visible through a telescope. Students of science and the history of science will find Hooke's early forays into biology and optics a good primer for further learning.
This thirty-third volume of the Experimental Methods in the Physical Sciences series provides a subject and author cumulative index for all previous volumes for easy reference.
Purification of Laboratory Chemicals: Part Two, Inorganic Chemicals, Catalysts, Biochemicals, Physiologically Active Chemicals, Nanomaterials, Ninth Edition describes contemporary methods for the purification of chemical compounds. The work includes tabulated methods taken from literature for purifying thousands of individual commercially available chemical substances. To help in applying this information, the more common processes currently used for purification in chemical laboratories and new methods are discussed. For dealing with substances not separately listed, another chapter is included, setting out the usual methods for purifying specific classes of compounds. Laboratory workers, whether carrying out research or routine work, will invariably need to consult this book. Apart from the procedures described, the large amount of physical data about listed chemicals is essential. This fully updated, revised and expanded new edition includes the purification of many new substances that have been available commercially since 2017, along with previously available substances which have found new applications.
The damage that can occur in certain fibrous raw materials or in textiles during their production and storage of textiles is expertly described in this book by Karl Mahall. In particular, he explains methods for finding concealed textile defects by using microscopic analysis.Besides minor improvements and corrections, the new edition contains a new chapter "Poultry Feathers as Filling Material for Bedding and Textiles - Analysis of Faults." The reason for its inclusion is that natural feathers and down are not only used as a filling material for bedding but also for garments, such as anoraks, coats and sleeping bags.This book is especially useful as a manual for both chemical and textile engineers and quality engineers. It is also a useful reference for others in the textile industry in general.
This book illustrates the practical workings of environmental transmission electron microscopy (ETEM) from history and instrument design through to solving practical problems. Aspects of instrument design, performance, and operating procedures are covered, together with common problems and pitfalls of the technique. Not only will a properly operated instrument and a carefully set up experiment provide new insight into your specimen, but the ability to observe the specimen in its natural habitat will be essential to meeting specific design criteria for the development of the next generation of materials. Over the past five decades, transmission electron microscopy (TEM) under environmental conditions relevant to a particular sample has been of increasing interest. Symposia dealing with the topic are now among the best attended at international microscopy conferences. Since typical operating modes for the ETEM require the sample be subjected to a harsh environment consisting of corrosive gases and high temperatures, the challenges of adapting and operating the instrument for observation under dynamic operating conditions are numerous. However, careful consideration of the interaction of the electrons with the gases and sample, as well as the gases with the microscope components, can lead to highly rewarding results. In Controlled Atmosphere Transmission Electron Microscopy, leading experts help you to perform successful experiments using the ETEM, and to interpret and understand the results.
Unifies the complex welter of techniques used for chemical separations by clearly formulating the concepts that are common to them. The mass transport phenomena underlying all separation processes are developed in a simple physical-mathematical form. The limitations and optimum performance of alternative separation techniques and the factors enhancing and limiting separation power can thus be described and explored. Generously illustrated and contains numerous exercises. Long awaited in the scientific community, it breaks new ground in understanding separation processes.
A zebrafish, the hull of a miniature ship, a mathematical equation and a food chain - what do these things have in common? They are examples of models used by scientists to isolate and study particular aspects of the world around us. This book begins by introducing the concept of a scientific model from an intuitive perspective, drawing parallels to mental models and artistic representations. It then recounts the history of modelling from the 16th century up until the present day. The iterative process of model building is described and discussed in the context of complex models with high predictive accuracy versus simpler models that provide more of a conceptual understanding. To illustrate the diversity of opinions within the scientific community, we also present the results of an interview study, in which ten scientists from different disciplines describe their views on modelling and how models feature in their work. Lastly, it includes a number of worked examples that span different modelling approaches and techniques. It provides a comprehensive introduction to scientific models and shows how models are constructed and used in modern science. It also addresses the approach to, and the culture surrounding modelling in different scientific disciplines. It serves as an inspiration for model building and also facilitates interdisciplinary collaborations by showing how models are used in different scientific fields. The book is aimed primarily at students in the sciences and engineering, as well as students at teacher training colleges but will also appeal to interested readers wanting to get an overview of scientific modelling in general and different modelling approaches in particular.
Since its inception, patch-clamp has continued to be widely considered the gold standard method to record ion channel activity. "Patch-Clamp Methods and Protocols, Second Edition," provides a comprehensive collection of new techniques for the development of automated, high-throughput screening systems for pharmacological evaluation, the use of various patch-clamp configurations together with novel molecular biological and imaging methodologies and enhanced stimulation protocols and perfusion systems. Divided into sections on pharmacology, physiology and biophysics, the chapters cover methods to generate more physiologically relevant conditions for drug application and screening technologies, recently developed applications such as optogenetic stimulation, advances in whole-cell recordings in freely-moving animals and novel technologies to create custom microelectrodes designed for reducing the access resistance and improving the rate of molecular diffusion. Patch-clamp is an indispensable technique for conducting pharmacological, physiological and biophysical research aimed at understanding crucial aspects of cellular and network function. Written in the successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols and notes on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible, "Patch-Clamp Methods and Protocols, Second Edition" will provide a useful technical and methodological guide to diverse audiences of electrophysiologists, from students to experienced investigators.
This book presents the latest developments in noncontact atomic force microscopy. It deals with the following outstanding functions and applications that have been obtained with atomic resolution after the publication of volume 2: (1) Pauli repulsive force imaging of molecular structure, (2) Applications of force spectroscopy and force mapping with atomic resolution, (3) Applications of tuning forks, (4) Applications of atomic/molecular manipulation, (5) Applications of magnetic exchange force microscopy, (6) Applications of atomic and molecular imaging in liquids, (7) Applications of combined AFM/STM with atomic resolution, and (8) New technologies in dynamic force microscopy. These results and technologies are now expanding the capacity of the NC-AFM with imaging functions on an atomic scale toward making them characterization and manipulation tools of individual atoms/molecules and nanostructures, with outstanding capability at the level of molecular, atomic, and subatomic resolution. Since the publication of vol. 2 of the book Noncontact Atomic Force Microscopy in 2009 the noncontact atomic force microscope, which can image even insulators with atomic resolution, has achieved remarkable progress. The NC-AFM is now becoming crucial for nanoscience and nanotechnology.
The electric dipole moment (EDM) challenge measures a non-zero proton EDM value and this book suggests how the challenge can be met. Any measurably large proton EDM would violate the standard model. The method to be employed uses an intense beam of 'frozen spin' protons circulating for hour-long times in a storage ring 'trap'. The smallness of EDMs allows them to test existing theories, but also makes them hard to measure. Such EDM experiments are inexpensive, at least compared to building accelerators of ever-greater energy.
"Fluorescence Microscopy: Super-Resolution and other Novel Techniques" delivers a comprehensive review of current advances in fluorescence microscopy methods as applied to biological and biomedical science. With contributions selected for clarity, utility, and reproducibility, the work provides practical tools for investigating these ground-breaking developments. Emphasizing super-resolution techniques, light sheet microscopy, sample preparation, new labels, and analysis techniques, this work keeps pace with the innovative technical advances that are increasingly vital to biological and biomedical researchers. With its extensive graphics, inter-method comparisons, and
tricks and approaches not revealed in primary publications,
"Fluorescence Microscopy" encourages readers to both understand
these methods, and to adapt them to other systems. It also offers
instruction on the best visualization to derive quantitative
information about cell biological structure and function,
delivering crucial guidance on best practices in related laboratory
research.
This thesis describes novel approaches and implementation of high-resolution microscopy in the extreme ultraviolet light regime. Using coherent ultrafast laser-generated short wavelength radiation for illuminating samples allows imaging beyond the resolution of visible-light microscopes. Michael Zurch gives a comprehensive overview of the fundamentals and techniques involved, starting from the laser-based frequency conversion scheme and its technical implementation as well as general considerations of diffraction-based imaging at nanoscopic spatial resolution. Experiments on digital in-line holography and coherent diffraction imaging of artificial and biologic specimens are demonstrated and discussed in this book. In the field of biologic imaging, a novel award-winning cell classification scheme and its first experimental application for identifying breast cancer cells are introduced. Finally, this book presents a newly developed technique of generating structured illumination by means of so-called optical vortex beams in the extreme ultraviolet regime and proposes its general usability for super-resolution imaging.
Combined with the other two volumes, this text is a comprehensive treatment of the key experimental methods of atomic, molecular, and optical physics, as well as an excellent experimental handbook for the field. Thewide availability of tunable lasers in the past several years has revolutionized the field and lead to the introduction of many new experimental methods that are covered in these volumes. Traditional methods are also included to ensure that the volumes will be a complete reference source for the field.
This volume presents current advanced technologies and methods used in super-resolution microscopy. The chapters in this book cover a wide range of topics such as introducing super-resolution microscopy into a core facility; two-photon STED microscopy for nanoscale imaging of neural morphology in vivo; correlative SIM-STORM microscopy; two-color single-molecule tracking in live cells; and correlative single molecule localization microscopy and confocal microscopy. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and comprehensive, Super-Resolution Microscopy: Methods and Protocols is a valuable resource for both established and novel researchers and users in this field.
The previous edition of this book marked the shift in technology
from video to digital camera use with microscope use in biological
science. This new edition presents some of the optical fundamentals
needed to provide a quality image to the digital camera.
Specifically, it covers the fundamental geometric optics of finite-
and infinity-corrected microscopes, develops the concepts of
physical optics and Abbe's theory of image formation, presents the
principles of Kohler illumination, and finally reviews the
fundamentals of fluorescence and fluorescence microscopy. The
second group of chapters deals with digital and video fundamentals:
how digital and video cameras work, how to coordinate cameras with
microscopes, how to deal with digital data, the fundamentals of
image processing, and low light level cameras. The third group of
chapters address some specialized areas of microscopy that allow
sophisticated measurements of events in living cells that are below
the optical limits of resolution.
Biobanking, an emerging field supported by academia, industry and health administrators alike, is distinctly different today from the practice that once defined it. The science of Biobanking, which initially involved simply storing blood or tissue samples in a freezer, is now a highly sophisticated field of research, and expected to grow exponentially over the next decade or two. This book aims to serve the purpose of further enriching the available literature on Biobanking, by offering unique and more useful collection of ideas for the future. The book outlines the experiences of developing modern Biobanking repositories in different countries, whilst covering specific topics regarding the many aspects of Biobanking. This book will be of interest to a wide range of readers including: academics, students, volunteers and advocates of patients' rights.
|
![]() ![]() You may like...
Principles and Practice of Modern…
Kevin Robards, P.E. Jackson, …
Hardcover
R1,410
Discovery Miles 14 100
STEM Research for Students Volume 2…
Julia H Cothron, Ronald N Giese, …
Hardcover
R2,818
Discovery Miles 28 180
STEM Research for Students Volume 1…
Julia H Cothron, Ronald N Giese, …
Hardcover
R2,804
Discovery Miles 28 040
The Wear Debris Analysis Handbook
Trevor M. Hunt, Brian J. Roylance
Hardcover
R1,564
Discovery Miles 15 640
Analytical Atomic Absorption…
Alfredo Sanz-Medel, Rosario Pereiro
Hardcover
R1,572
Discovery Miles 15 720
Microbial Surfaces - Structure…
Terri A. Camesano, Charlene Mello
Hardcover
R1,847
Discovery Miles 18 470
Mentoring Strategies To Facilitate the…
Kerry Karukstis, Bridget Gourley, …
Hardcover
R5,672
Discovery Miles 56 720
Integrating Information Literacy into…
Charity Lovitt, Kristen Shuyler, …
Hardcover
R5,029
Discovery Miles 50 290
|